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Abstract 
In this paper report, we examine phase 
reconciliation works and how it solves 
the problems of contention based on the 
paper Phase Reconciliation for 
Contended In-Memory Transactions by 
Neha Narula, Cody Cutler, Eddie 
Kohler, and Robert Morris.  The authors 
also presented Doppel, a phase 
reconciliation database. Due to today’s 
advancement in technology, there has 
been a rapid increase in multiprocessor 
systems and this has led to the increased 
need to develop concurrent systems that 
can make efficient use of all the 
available resources. Concurrent systems 
has been used to build applications scale 
these processors.  While the number of 
cores per chip grows exponentially, the 
problem of how to make effective use of 
these resources has not been fully solved 
and cannot be fully ignored. 
 
INTRODUCTION 
To gain more performance and make 
maximum use of the cores, a process 
should execute in parallel which should 
result in increased speed in process 
execution, resources used to the 
maximum capacity, better performance, 
etc. This would have been perfect if it 
had been the case.  But, there are 
problems that arises that would not have 

been there if all processes were executed 
serially. As we know, processes 
executing in parallel also need access to 
some resources, communicate with each 
other and protect invariants and this can 
be troublesome provided that two or 
more processes might need to access or 
make changes to a particular resources at 
the same time and will try at the same 
time to gain access to these resources 
and the result of this action can never be 
good.  This is not a new problem in 
computer science and have been 
different people have come up with ways 
to try to addressed this issue.   

This paper is focused on the 
contentions that happen in memory by 
transactions. This particular issue has 
been addressed by Database concurrency 
control protocols (2PL and OOC). In 
2PL  (two phase locking), a transaction 
that needs a resource being used by 
another resource will wait for the other 
transaction by just spinning on a lock 
while in OOC (optimistic concurrency 
control), the transaction will wait for the 
other by aborting and trying again to see 
if the resource is available. Both 
methods force the transactions to 
execute serially which defeats the 
concept of parallel execution. 

Unfortunately, this problem is 
something we cannot escape from in the 



real world. For instance, lets consider an 
IPhone 6 listed on eBay to be sold as on 
bid or to the best offer with a lot of 
watchers (people biding or monitoring 
the item to bid at the last minute). 
Getting to the end time of the item, a lot 
of people will be sending there offers 
and it can happen that many people send 
an offer at the same time, modern 
multicore databases will execute these 
actions serially and might not get to the 
real highest offer before the time ends 
thereby, giving a wrong amount. So this 
item will end up being sold not to the 
highest bidder but to the last offer the 
database was able to update before the 
time ran out. 

This paper presents a new 
concurrency control technique phase 
reconciliation which can execute some 
highly conflicting workload efficiently 
in parallel and still guaranties 
serializability; and also presents Doppel 
which is a phase recognition based In-
memory database. Phase reconciliation 
is based on shifting data between splits 
and reconciled phases dynamically. 
Phase transactions can be executed 
either in joint phases or in split phases. 
In joined phases, there are no splits and 
therefore, no per core values. So, here 
database structures are accessed using 
OCC. In split phases, to reduce 
contention, data is split and operations 
are done in different cores. These 
different cores make updates to their per-
core values and which after executions 
on each core; the results are reconciled 
to a global store by short reconciliation 
phases.  When a reconciliation phase 
ends, blocked transactions resume. 

Work has been done to try to 
address issues that arise on transactional 
memory, database concurrency control 
and Distributed consistency. Phase 
reconciliation got inspired by most of 

these works and adopted some of them 
in its design. In this paper I would be 
reviewing the Phase Reconciliation for 
contended In-Memory Transactions 
paper [1] and also will be discussing the 
techniques used in Dora [2] in 
implementing the Main-memory 
database concurrency control, the design 
of Sync-Phase [3] transactional memory 
and how RedBlue consistency [4] is 
applied to keep the distributed 
consistency property.  In this paper, I 
would look into the design and 
implementation of phase reconciliation 
in the context of Doppel and also into 
these other 3 techniques.Now we will 
discuss of the implementations.  
 
DORA 
DORA is a data oriented architecture 
that tries to solve the problem of using 
locks which generally impedes 
performance. Pandis, Johnson, 
Hardavellas, and  Ailamaki in the paper 
Data Oriented Transaction execution 
noted that the main cause of cause of 
contention is the traditional tread-to-
transaction assignment policy. On the 
conventional transaction where each 
thread runs a separate transaction, access 
to data by the transactions during a 
shared data access leads to contention. 

The access patterns here are 
uncoordinated and so to ensure integrity, 
different lock mechanisms are used. 
These lock mechanisms however, 
creates overhead and reduces 
performance. Experiments conducted by 
Pandis, Johnson, Hardavellas, and  
Ailamaki showed that the system spends 
more than 85% of its execution time on 
threads waiting to critical sections in 
side the lock manager.  A new data 
oriented achetecture OLTP was 
proposed by the authors that could 
drastically reduce the contention 



problems. And this was evaluated using 
a prototype DORA.  

This system, rather than each 
thread being coupled with a transaction, 
threads in DORA has its own subset of 
database. DORA uses a mechanism the 
authors called thread-to-data assignment 
where transactions are broken down into 
smaller actions and are routed to 
different threads of execution depending 
on the data required by the transactions. 
DORA handles the distribution of 
computations while each thread 
coordinates access to data in its subset.  
This limits the interaction between 
threads and removes some of the 
contention problems. The routing /flow 
of transactions from one thread to 
another as they assess different parts of 
the database is done with minimal 
overhead as DORA makes use of 
multicore systems high-bandwidth, low-
latency inter-core communications.  

The main functionalities of 
DORA are binding to worker threads to 
subset of the database, work distribution 
of each transaction to the transaction 
executing threads according to the data 
accessed by the transaction and last 
functionality is interaction avoidance 
during request executions using 
centralized lock manager.  
Database binding to worker threads is 
done by setting a routing rule for each 
database table. Worker threads are called 
executors and each dataset is assigned to 
an executor. Multiple dataset from a 
single table can be assigned to one 
executor. The routing rule according to 
the authors is a mapping of sets of 
records, or datasets, to worker executors. 
Routing rule has no requirement, which 
is that each possible record of the table 
need to map to a unique dataset.  
Routing rules changes periodically at 
runtime to balance load and are managed 

and updated by DORA. During 
transaction execution, different actions 
are made to the database. An action is a 
subset of a transaction code that requires 
access to the database. This access can 
be to a single record or small sets of 
records from a single table.  A graph of 
these actions to the database is known as 
a transaction flow. For DORA to 
distribute/route transactions from one 
executor to another, it needs to know the 
action and subsets of database which the 
action that a transaction executes. This it 
does by translating each transaction to a 
transaction flow graph. Each action has 
an identifier, which is used to identify 
the records the action needs to access.  
This identifier can be a set of values for 
the routing field (routing field can any 
combination of the columns of the table) 
or an empty space (actions without any 
routing field) depending on the type of 
access required. The more specific an 
action identifier is, the more easily the 
transaction involved with that action 
could be routed. Two actions however 
can be merged if they have the same 
identifier.  

In order to control distributed 
execution of a transaction and transfer 
data between actions that have data 
dependencies, DORA uses rendezvous 
points or RVP. RVP or rendezvous 
points are the shared objects across 
actions of the same transactions. We 
know that it can be possible for more 
than one action to require access to the 
same data and when this happens, it can 
lead to bottlenecks even in DORA. 
DORA addresses this issue by using 
rendezvous points. Whenever two 
actions are data dependent, execution of 
a transaction are separated to different 
phases by rendezvous points. A counter 
was added to each RVP that is initially 
set to the number of actions that need to 



report to it. This counter is decremented 
by every executor that has finished 
executing an action and when the 
counter becomes zero, the last executor 
that zeroed the counter starts the next 
phase. Figure 1 shows a demo on how a 
transaction code (SQL), which would 
usually be serially executed, is optimized 
in by DORA.  

DORA moves all actions that 
makes use of the same dataset to one 
executor. Three data structure are 
associated with each executor and they 
are an incoming actions queue, a 
completed action queue and a thread-
local lock table. The incoming queue 
contains incoming actions and these 
actions are executed according to the 
order they enter the queue. The executor 

maintains isolation and ordering across 
conflicting actions. And for this, it uses 
the local lock table to detect conflicting 
actions and the conflict resolution 
happens at the action identifier level.  
The local locks have a shared mode and 
exclusive mode and an action needs to 
acquire the local lock before proceeding. 
When the lock is obtained, it executes 
without a centralized concurrency 
control.  As for load balancing, the load 
of each executor is monitored by the 
Dora resource manager monitor and 
actions are taken if the average load an 
executor is assigned is a lot larger than 
the rest. This action taken is usually the 
resizing the data assigned to each 
executor. This action however, is not 
free. 

 

 
 
Figure 1. Graphical representation of DORA’s execution plan using Shore-MT  



SYNCHRONIZATION 
PHASES 
As transactions read and write to 
memory concurrently, the transactional 
memory system needs to check for 
modifications and changes to a memory 
region between two memory accesses in 
other to maintain the consistency. This 
validation is not cheap because, the read 
set usually increases as the transaction 
progresses. The read set is the list of 
memory locations needed to be checked.   

J. Schneider, F. Landau, and R. 
Wattenhofer however, took another 
approach to address the problem of 
concurrency in transactional memory. 
This approach is however different from 
DORA in that it was based on Thread-
to-transaction policy. They introduced a 
phase-based technique where time is 
divided into two different phases: the 
computational phases and commit 
phases (the synchronization phase). This 
technique is called Sync-phase 
technique. Here, active transactions do 
computations during the computation 
phase and are allowed committing only 
during the commit phase. Figure 2 
shows a transaction read set validation in 
ordinary DSTM and Sync-Phase DSTM. 

Phases can be determined 
through time or by some other means.  
During the commit phase, transactions 
that have something to commit, commit 
the transaction and those with nothing to 
commit remain idle during this phase 
and have to validate their read set and 
states after each commit phase.  

J. Schneider, F. Landau, and R. 
Wattenhofer proposed a technique of 
which the basic idea is to execute 
multiple commits at the same time to 
make them look like one single commit 
to an outside observer. The Sync-phase 
technique alternates commit 
(synchronization) and the computation 

phases. Transactions that finish after a 
previous commit phase have to wait until 
the next commit phase. The duration of 
each phase can be set according to 
preference. This can be done either using 
an algorithm that sets the phase duration 
at runtime or by using fixed time 
interval. As computations take longer 
time, the duration of the computation 
phase needs to be allocated a longer time 
but not too much as the transaction 
which finished their computation and 
needs to commit will have to wait a long 
time before committing. A middle 
ground has to be found in other to get a 
good performance. J. Schneider, F. 
Landau, and R. Wattenhofer got rid of 
the explicit use of the phase duration in 
Sync-phase STM (Software transactional 
memory) in order to increase 
performance. There are two rules to start 
and end commit phases: 

1. A commit phase starts if a 
fraction of all transactions is 
ready to commit: Nc/N ≥c0 for c0 
∈ [0, 1] 

2. A commit phase ends if a 
fraction of all transactions has 
committed: Nc/N ≤c0 for 0≤  c1 < 
c0   

where Nc is the number of transactions 
ready to commit, N is the total number 
of active transactions (but temporary 
sleeping). 
Rule 1 prevents time wasted by waiting 
for the next commit phase if enough 
transactions can commit. Ideally, the 
choice of c0 is made such that the cost of 
waiting of the Nc transactions balances 
the costs of validations of the other N - 
Nc transactions. 
Rule 2 tries to handle the case where 
only few transactions wants to commit 
which would be better to stop the 
commit phase but also allow the 



 
 
Figure 2. Validation of read sets in DSTM and Sync-Phased DSTM 
 
 
transaction which are ready to commit to 
commit

 
RadixVM 
The problem of memory contention is 
not only related to transactional memory. 
Multithreaded applications, which run 
on many core processors, also face the 
same problem. Austin T. Clements, M. 
Frans Kaashoek, and Nickolai Zeldovich 
took another turn in looking into the 
problem of multithread memory 
contention not just using software 
transactional memory but using virtual 
memory systems. Using this approach, 
they considered multithreaded 
applications instead of transactions. 

They focused on ways to make 
memory allocation, freeing and page 
fault using mmap and mumap calls 
which applications use to allocate and 
return memory to the operating system 
perfectly parallelizable for threads of a 
process that use non-overlapping regions 
in the shared address space. Serializing 
mmap and mumap calls applications can 
easily be bottlenecked by contentions in 
the operating system. RadixVM is a 

virtual memory system designed to 
enable fully concurrent operations on 
shared address space for multithread 
processes on cache-coherent multicore 
computers in which virtual memory 
system operations contend only if they 
operate on overlapping memory regions. 

RadixVM uses three different 
ideas to enable mmap, mumap and 
pagefault to scale perfectly in non-
overlapping memory regions. First, it 
uses radix tree to record mapped 
memory regions. Second, it uses a 
scalable reference counter to track the 
sates of physical pages to know if they 
are free and no radix tree nodes are used 
or not if they are not free.  Third, it 
avoids shooting down hardware TLBs 
that don’t have the page mapping cached 
whenever a page must be unmapped. 
RadixVM itself was implemented in a 
research kernel derived from xv6. One 
of the main contributions of RadixVM is 
reducing the number of cores that must 
be contacted to do a TLB shoot down. 
This was done by using a scheme that 
tracks which cores may have each page 



mapping cached to their TLBs, thus 
allow RdixVM to send TLB shootdown 
interrupts only to those cores, and 
remove TLB shootdowns for mappings 
not shared between cores. RadixVM 
uses a radix-tree-based data structure, 
which allows for concurrent non-
overlapping lookups. Deletion, and 
inserts without using software 
transactional memory. In RadixVM, if k 
number of threads in the same process 
deallocates memory, then the mumap 
scale perfectly so, they will take the 
same amount of time to execute and 
does not depend on k. In the same way, 
if one thread executes mmap and another 
thread executes the mumap, they won’t 
slow each other down provided they do 
not use overlapping memory regions. If 
they use overlapping memory regions, 
then they would be serialized. RadixVM 
uses Refcache a simple reference 
counting scheme to keep track and 
retake memory pages and radix nodes. 
For instance, to free underlying physical 
pages, it has to make sure that there is no 
other thread using the same physical 
pages and thus needs to make use of a 
reference count to know when there are 
threads using the physical pages. Let Nrc 
be the number of reference counted 
objects and Nc be the number of cores, 
Refcache requires space proportional to 
Nrc + Nc which is less than other 
scalable reference counting mechanisms 
which require Nrc x Nc. It implements a 
per-core reference delta caches and is 
targeted at workloads that can tolerate 
some latency in reclaiming resources 
and when increment and decrement 
occur in the same core. For instance, the 
same thread that faulted pages into a 
mapped memory region also unmaps it. 

In Refcache, each reference 
counted object has a global count and 
each core maintains a local, fixed cache 

of deltas to objects’ reference counts. 
Incrementing and Decrementing an 
object’s reference count only modifies 
the local cached delta that is periodically 
flushed to the objects global reference 
count. The true count can be gotten by 
the summing an object’s global count 
and the local delta for an object found in 
the per-core delta caches. Refcache 
divides time into periodic epochs (in 
which each core flushes all the reference 
count deltas in its local cache, applying 
updates to the global reference count of 
each object), which it uses to determine 
a zero true count. Once the true count 
drops to zero, there would be no updates 
and thus when the global reference count 
drops to zero and remains zero for an 
entire epoch, it can be guarantied that the 
true count is zero and the object is freed. 

To support the tracking of 
objects that may have been deleted 
Refcache uses weak references, which 
provide tryget operation that will either 
increment the object’s reference count 
and return the object, or will indicate 
that the object has been deleted. The 
weak reference is a pointer with a dying 
bit (set when the object’s global 
reference count first drops to zero) and a 
back-reference from the referenced 
object. When Refcache decides to free 
the object, it first automatically clears 
the both the dying bit and the pointer in 
the weak reference and then frees the 
object but if this doesn’t succeed, it 
reexamines the object after 2 epochs 
later.  
 
  



PHASE RECONCILIATION 
 
Design 
Phase reconciliation design is based o 
research in 4 different areas: 
transactional memory, main-memory 
database concurrency control, multicore 
scalability, and Distributed consistency. 
Phase reconciliation makes contributions 
in each of these areas. 

In transactional memory, since 
transactions are often very large to use 
hardware transactional memory, Phase 
memory developed techniques to split 
transactions and apply them using time 
stamp ordering. This technique helps in 
situations where spurious aborts are 
common. Unlike Sync-Phase, it doesn’t 
split transactions into compute and 
commit phases and unlike DORA, it 
doesn’t partition data and running one 
partition per core but partitions local 
copies of the data amongst cores for read 
and write and provides a way to remerge 
the data for access by other cores. In 
Main-memory database concurrency 
control, by restricting transaction 
execution to phases, phase reconciliation 
makes it possible for transactions to 
commit without global communications.  

In multicore scalability, Phase 
reconciliation aimed to reduce the 
burden shifted onto reads by other 
methods by amortizing the effect of 
reconciliation over many transactions 
and making these ideas work for bigger 
transaction systems. 

In distributed consistency, by 
restricting operations only during phases 
but not between them, phase 
reconciliation supports both scalable 
implementations of commutative 
operations and efficient implementations 
of non-commutative operations on the 
same data items.  

Phase reconciliation was implemented in 
a multicore, in-memory database called 
Doppel. Transactions in Doppel once 
begun run to completion without 
communication or disk Input/output and 
this means that transactions would not be 
affected or blocked by disk stalls or user 
stalls. Doppel also uses the concept of 
worker threads just like in DORA. These 
worker threads are one per core, run 
transactions. Doppel records have types 
and transactions interact with the 
database using calls to operations. There 
are different operations in Doppel. Some 
of these operations return values, some 
don’t return values. Some operations 
modify the database and some don’t and 
each database operations access just one 
database record but users can build multi 
record operations from single-record 
ones using transactions. For instance, the 
GET(k), returns the key k and doesn’t 
modify the database.  
During split and reconciliation phase, 
Doppel marks contended database 
records as splits. For these records, 
operations that would normally contend 
would proceed in parallel.  
 

• At the beginning of each split 
phase, Doppel initializes per-core 
slices for each split record. There 
is one slice per contended record 
per core. 

• During the split phase, all 
operations on split records are 
applied to their per-core slices. 

• During the reconciliation phase, 
the per-core slices are merged 
back into the global store. 

 
Figure 3 shows an example of a split 
record with per core slices in two cores. 
 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 3. SR- Split record, PcS- Per core slice 
 

To ensure good performance, 
per-core slices must be quick to 
initialize, and operations on slices must 
be fast. To ensure efficiency, the 
combination of applying the operation to 
a slice and the merging of the slices 
should have the same effects as the 
operation would normally in some serial 
order. To ensure correctness, 
serializability must be ensured in 
Doppel. However, the code required to 
update a slice may be different from the 
code needed to update a normal record. 
There must exist a serial order of 
transactions that split which satisfies:  

• The result of merging per-core 
slices with the global store is the 
same as if the transactions had 
executed, in the serial order, 
against the global store. 

• Every operation executed on a 
split record gets the same return 
value as if it had executed, in the 
serial order, against the global 
store. 

• Every operation executed on the 
global store gets the same return 
value as it would in the serial 
order. 

 

Doppel supports several splittable 
operations and to ensure these operations 
are correct and fast, splittable operations 
have to follow the following guidelines:  
 

• Every splittable operation must 
commute with itself. 

• Every splittable operation must 
return nothing. 

• The system selects one splittable 
operation per split record per 
split phase. The selected 
operation can change between 
phases—for example, the 
operation for key k might be M 
in in one split phase, and Max in 
the next—but within a given 
phase, any operation but the 
selected operation causes the 
containing transaction to abort 
(and retry in the next joined 
phase). 

• The size of a per-core slice is 
independent of the number of 
operations that executed on that 
slice. 

The splittable operations in Doppel are:  
• MAX(k,n), MIN(k,n) – Replaces 

the integer k with the maximum 
or minimum of it and n. 

SR	
  

SR	
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   PcS	
  



• ADD(k,n) – Adds n to the integer 
k. 

• OPUT(k,o,x) – Operation on 
ordered tuples. 

• TOPKINSERT(k,o,x) – Operation 
on top-K sets. 

More operations could also be easily 
added. 
To look into how Doppel executes 
splittable operations, lets take for 
instance MIN(k,n) which replaces k with 
the minimum of k and n and returns 
nothing.  
When Doppel detects contention on 
MIN(k,n) operations for some key k, it 
marks k as split for MIN. When entering 
the next split phase, Doppel initializes 
per-core slices cj[k] with the global 
value v[k]. When a transaction on core j 
commits an operation MIN(k,n), Doppel 
sets cj[k]← MIN{cj[k],n}. Key k is 
temporarily reserved for MIN operations; 
a transaction that tries to execute another 
kind of operation on k will block until 
the following joined phase. When the 
split phase is over, Doppel merges the 
per-core slices by setting v[k]← cj[k]← 
minjcj[k].  If many concurrent 
transactions call MIN(k,n) during a split 

phase, Doppel executes them in parallel 
on multiple cores with no coordination, 
getting good parallel speedup over the 
serial execution of conventional OCC or 
locking. 
 
Joined phase execution 
Any transaction can be executed in a 
joined phase. There is no notion of split 
data and no per-core slices so, the 
protocol treats all records the same. Thus 
joined phase can use any concurrency 
control protocol but if everything work 
as planned, the joined phase will have 
fewer conflicts since transactions that 
conflicts should run in split phase, it 
would make more sense to use a 
protocol that would perform well when 
conflicts are rare. This is why Doppel’s 
joined phase uses optimistic concurrency 
control.  Each transaction executes 
within a single phase. Any transaction 
that commits in a joined phase executed 
completely within that joined phase. 
Doppel thus cannot leave a joined phase 
for the following split phase until all 
current transactions commit or abort. Fig 
4a shows two transactions running in 
joined mode. 

 



 
   (a)      (b) 
Figure 4. (a) Concurrent transactions executing on different cores in joined phase. (b) 
Concurrent transactions executing on different cores in split phase. 
 
Split phase execution 
Some transactions that would normally 
conflict can be executed in parallel in 
split phase.  Split-data operations 
execute on per-core slices. A transaction 
that invokes an unselected operation on a 
split record will be aborted and stashed 
for restart during the next joined phase. 
Doppel doesn’t need to lock slices or 
check their version numbers since the 
slices are invisible to concurrently 
running transactions. Just as in joined 
phase, any transaction that commits in 
split phase executed completely within 
that same split phase; Doppel does not 
enter the next joined phase except all of 
the split-phase transactions commit or 
abort. Fig 4b shows a split phase, with 
each transaction writing to per-core 
slices. 
 
Reconciliation phase execution 
This phase comes after a split phase. 
During this phase, each core stops 
processing transactions and merges its 
per-core slices with the global store. 
This involves serial processing of the 

per-core slices since each core has to 
lock the global record, updates the value 
and the releases it. But the expense of 
serial processing is amortized over all 
the transactions that executed in the split 
mode. The per-core slices are then 
cleared and the database enters the next 
joined phase.  
 
Coordinator threads manage transitions 
between phases. Phase transitions occurs 
in 3 steps: 

1. Coordinator publishes the phase 
change in a global variable. 

2. All Workers check this variable 
and if a change is noticed, they 
stop processing transactions in 
the current phase, acknowledge 
the change and wait for 
permission to continue. 

3. Coordinator releases the workers 
and they start executing 
transactions in alternate phase. 

For instance, to	
  initiate	
  a	
  transition	
  
from	
  a	
  split	
  phase	
  to	
  the next joined 
phase, the coordinator publishes the 
phase change in a global variable. When 



a split-phase worker notices a transition 
to the reconciliation phase, it stops 
processing transactions, merges its per-
core slices with the global store, and 
then acknowledges the phase transition 
and waits for permission to proceed. 
Once all workers have acknowledged the 
change, the coordinator releases them to 
the next joined phase; each worker 
restarts any transactions it stashed in the 
split phase and starts accepting new 
transactions. It is safe for reconciliation 
to proceed in parallel with other cores’ 
split-phase transactions since 
reconciliation modifies the global 
versions of split records, while split-
phase transactions access per-core slices. 
The Doppel coordinator usually starts a 
phase change every 20 milliseconds, but 
feedback mechanisms allow it to flexibly 
adjust to the workload. 

To decide which transaction to 
move to execute in split phase, Doppel 
samples transactions conflicting record 
access during the joined execution and 
keeps a count of which records are most 
conflicted and by which operations. 
During transition to split phase, a 
coordinator thread examines these 
counts and mark the most conflicted 
records as split data for the next phase. 
Each cores reads this list before the start 
of the next phase in order to know which 
records are restricted. And to decide 
which transaction to move back to 
execute from split phase to joined phase, 
Doppel samples which transactions are 
stashed due to incompatible operations 
on split data during the split phase. 
Doppel also supports manual data 
labeling.  

Doppel is implemented as a 
multithreaded server written in Go and 
runs one worker thread per core, and 
also one coordinator thread which is 
responsible for changing phases and 

synchronizing workers when progressing 
to a new phase. Doppel uses channels to 
synchronize phase changes and 
acknowledgements between the 
coordinator and workers. Workers read 
and write to a shared store, which is a set 
of key/value maps, using per-key locks. 
The maps are implemented as hash 
tables. 
 
Experiments and Discussion 
In this section we are going to look into 
the experiment performed by these 
different approaches to solving memory 
contention problem. I would have 
wanted to compare the throughput of all 
the approaches side by side but they all 
based their experiments on different 
measurements. Thus, in this section we 
will be discussing some of the 
experiments performed by these 
approaches, the good and the 
shortcomings of the different 
approaches. 

 First let us look into DORA 
which came in 2010. To show the 
difference between thread-to-transaction 
and thread-to-data, the performance 
overhead of critical section contention of 
DORA and was measured against a 
thread-to-transaction. It depicts the 
throughput per CPU utilization attained 
by a state-of-the-art storage manager as 
the CPU utilization increases. 
Transactions from three OLTP 
benchmarks: Nokia's Network Database 
Benchmark or TM-1 [19], TPC-C [20], 
and TPC-B [1] were used. Transaction 
accesses only 1-4 records, and must 
execute with low latency even under 
heavy load. A database of 5M 
subscribers (~7.5GB) was used. The 
result of this is shown in Fig 5.  The 
result gotten shows that as the machine 
utilization increases, the performance 



per CPU utilization drops for the baseline. 
 

 
   
 Fig 5. The time breakdown of the performance of in executing transactions from TM-1, 
TCP-C and TCP-B 
 
For the experiment, a conventional 
transaction processing system Shore-MT 
was used as the baseline. I would assume 
that at that time, this is a state of the art 
system to be used for a comparison. The 
bad performance in the baseline can be 
attributed to the uncoordinated and 
arbitrary access pattern of each 
transaction and since transactions run on 
separate threads, they tend to contend 
with each other during shared data 
access. This is one of the problems phase 
reconciliation tries to solve. The 
downside is that the over head of cross-
partition transactions is significant, and 
finding a good partition can be difficult.  

The second approach is 
synchronization phases, which came 
later in 2011 with the idea of dividing 
time into different phases in other to 
speed up transactional memory.  They 
implemented this idea in three ways: 
clock driven, phase flag and rule based. 

The first uses phases of fixed length and 
is clock driven. The second uses phases 
that depend on a flag implemented in the 
software and the third uses a global 
counter that is incremented when ever a 
transaction commits.	
  A transaction only 
needs to validate its read set, given that 
the commit counter changed since the 
last validation. These implementations 
and the non sync-phase DSTM were 
compared using (a)sorted list, (b)global 
counter and (c) independent counter 
benchmarks. The results gotten in Figure 
6 shows that non-phased DSTM always 
performed worse with others varied. It 
would have been interesting to compare 
this with DORA to see the improvement 
in throughput against the thread-to-data 
systems. The down side of this approach 
is how to select the optimal duration for 
each phase. 
 



 
                                     (a)                                                                        (b) 
 

 
                                (c) 
 
Figure 6. Comparison of the different implementations of  DSTM. 
 

The next is RadixVm that came 
in 2013 and where interested in virtual 
memory. The goal was to achieve full 
concurrent operations on shared address 
spaces for multithreaded processes on 
cache-coherent multicore computers. 
They argued that some of the features in 
software transactional memory was not 
really explained well to be used in a 
virtual memory system so they wanted to 
allow some of these concurrent features 
for non overlapping inserts, delete and 
look ups without the need for STM and 

also to improve the performance of TLB 
shootdowns by using a radix-tree data 
structure. Even though they succeeded 
and there were a lot of experiments that 
proved that, there was a downside to it. 
Since radix a tree is less compact than 
the binary tree representations of virtual 
memory metadata, the memory overhead 
increased in RadixVm and this can be 
attributed also to the fact that page tables 
are per core instead of shared.  Figure 7 
shows the difference in memory usage.  

 



 
 
Figure 7. Memory usage for alternate VM representations. 
 

Now, phase reconciliation came 
in 2014 to take the best of each of these 
together in phase reconciliation on 
transactional memory. They were 
interested in making transactional 
memory faster and better than 2PL and 
OCC. They were inspired by the 
different approaches before them. From 
Sync-phases, it took the idea of splitting 
transactions up into computation and 
commit phases but modified it. Phase 
reconciliation doesn’t split transactions 
but assign transactions to different 
phases, based on the type of data they 
access and the type of operations they 
perform. From DORA, it took the idea 
of partitioning data and running one 
partition on one core but modified it. 
Phase reconciliation doesn’t partition 
data but partitions local copies of data 
amongst cores for write and provide a 

way to re-merge the data for access by 
other cores. From Doppel, it took the 
idea of using per core counters and the 
reconciling the per-core data structure 
when they execute but makes the 
performance burden by amortizing the 
effect of reconciliation over many 
transactions. The contribution of phase 
reconciliation was to make these ideas 
work in a larger transaction system.  
Figure 8 shows the different 
comparisons of Doppel, OCC and 2PL. 
Figure 8 (a) shows the total throughput 
for INCR1 as a function of the 
percentage of transactions that increment 
the single hot key, (b) shows the total 
throughput for INCRZ as a function of 
the zipfian distribution parameter  
(∝ )and (c) shows the RUBiS-C 
benchmark. 

 



 
                                            (a)            (b) 
 
 

 
    (c) 
 
Figure 9. Performance test on Doppel, OCC and 2PL 
 
From the Results of the performance 
test, it is obvious Doppel performed 
better. In the INCR1 microbenchmark, 
there are 1M 16-byte keys, and each 
transaction increments the value of a 
single key. There is a single popular key 
and the percentage of transactions, 
which increment that key is varied; each 
other transaction randomly chooses from 
the not- popular keys.  

In the INCRZ microbenchmark, 
there are 1M 16-byte keys. Each 

transaction increments the value of one 
key, chosen with ∝ (Zipfian distribution 
of popularity). The vertical line indicates 
when Doppel starts splitting keys. 
Doppel works well in larger 
transactional system  
 
Conclusion 
These papers had one thing in common. 
They had the same goal, which is to 
solve the problem of memory contention 
by processes. Due to the exponential 



growth of cores on a chip, this problem 
became more and more critical and had 
to be addressed. There all tried 
addressing this problem in different 
ways each with its stronghold and 
downside. Phase transaction tried getting 
the best of the earlier approaches to 

make transactional memory more 
efficient. It would have been interesting 
if there were a comparison of current 
thread-to-transaction systems and 
thread-to-data systems to see which one 
is really better now. 
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