
Paper report for CS240 (Computer Systems and Concurrency), King Abdullah University
of Science and technology, Fall 2014

Instructed By: Prof. Hany Ramadan

Paper Report on Phase Reconciliation for Contended In-Memory
Transactions

Uchenna Akujuobi

Uchenna.akujuobi@kaust.edu.sa

Abstract
In this paper report, we examine phase
reconciliation works and how it solves
the problems of contention based on the
paper Phase Reconciliation for
Contended In-Memory Transactions by
Neha Narula, Cody Cutler, Eddie
Kohler, and Robert Morris. The authors
also presented Doppel, a phase
reconciliation database. Due to today’s
advancement in technology, there has
been a rapid increase in multiprocessor
systems and this has led to the increased
need to develop concurrent systems that
can make efficient use of all the
available resources. Concurrent systems
has been used to build applications scale
these processors. While the number of
cores per chip grows exponentially, the
problem of how to make effective use of
these resources has not been fully solved
and cannot be fully ignored.

INTRODUCTION
To gain more performance and make
maximum use of the cores, a process
should execute in parallel which should
result in increased speed in process
execution, resources used to the
maximum capacity, better performance,
etc. This would have been perfect if it
had been the case. But, there are
problems that arises that would not have

been there if all processes were executed
serially. As we know, processes
executing in parallel also need access to
some resources, communicate with each
other and protect invariants and this can
be troublesome provided that two or
more processes might need to access or
make changes to a particular resources at
the same time and will try at the same
time to gain access to these resources
and the result of this action can never be
good. This is not a new problem in
computer science and have been
different people have come up with ways
to try to addressed this issue.

This paper is focused on the
contentions that happen in memory by
transactions. This particular issue has
been addressed by Database concurrency
control protocols (2PL and OOC). In
2PL (two phase locking), a transaction
that needs a resource being used by
another resource will wait for the other
transaction by just spinning on a lock
while in OOC (optimistic concurrency
control), the transaction will wait for the
other by aborting and trying again to see
if the resource is available. Both
methods force the transactions to
execute serially which defeats the
concept of parallel execution.

Unfortunately, this problem is
something we cannot escape from in the

real world. For instance, lets consider an
IPhone 6 listed on eBay to be sold as on
bid or to the best offer with a lot of
watchers (people biding or monitoring
the item to bid at the last minute).
Getting to the end time of the item, a lot
of people will be sending there offers
and it can happen that many people send
an offer at the same time, modern
multicore databases will execute these
actions serially and might not get to the
real highest offer before the time ends
thereby, giving a wrong amount. So this
item will end up being sold not to the
highest bidder but to the last offer the
database was able to update before the
time ran out.

This paper presents a new
concurrency control technique phase
reconciliation which can execute some
highly conflicting workload efficiently
in parallel and still guaranties
serializability; and also presents Doppel
which is a phase recognition based In-
memory database. Phase reconciliation
is based on shifting data between splits
and reconciled phases dynamically.
Phase transactions can be executed
either in joint phases or in split phases.
In joined phases, there are no splits and
therefore, no per core values. So, here
database structures are accessed using
OCC. In split phases, to reduce
contention, data is split and operations
are done in different cores. These
different cores make updates to their per-
core values and which after executions
on each core; the results are reconciled
to a global store by short reconciliation
phases. When a reconciliation phase
ends, blocked transactions resume.

Work has been done to try to
address issues that arise on transactional
memory, database concurrency control
and Distributed consistency. Phase
reconciliation got inspired by most of

these works and adopted some of them
in its design. In this paper I would be
reviewing the Phase Reconciliation for
contended In-Memory Transactions
paper [1] and also will be discussing the
techniques used in Dora [2] in
implementing the Main-memory
database concurrency control, the design
of Sync-Phase [3] transactional memory
and how RedBlue consistency [4] is
applied to keep the distributed
consistency property. In this paper, I
would look into the design and
implementation of phase reconciliation
in the context of Doppel and also into
these other 3 techniques.Now we will
discuss of the implementations.

DORA
DORA is a data oriented architecture
that tries to solve the problem of using
locks which generally impedes
performance. Pandis, Johnson,
Hardavellas, and Ailamaki in the paper
Data Oriented Transaction execution
noted that the main cause of cause of
contention is the traditional tread-to-
transaction assignment policy. On the
conventional transaction where each
thread runs a separate transaction, access
to data by the transactions during a
shared data access leads to contention.

The access patterns here are
uncoordinated and so to ensure integrity,
different lock mechanisms are used.
These lock mechanisms however,
creates overhead and reduces
performance. Experiments conducted by
Pandis, Johnson, Hardavellas, and
Ailamaki showed that the system spends
more than 85% of its execution time on
threads waiting to critical sections in
side the lock manager. A new data
oriented achetecture OLTP was
proposed by the authors that could
drastically reduce the contention

problems. And this was evaluated using
a prototype DORA.

This system, rather than each
thread being coupled with a transaction,
threads in DORA has its own subset of
database. DORA uses a mechanism the
authors called thread-to-data assignment
where transactions are broken down into
smaller actions and are routed to
different threads of execution depending
on the data required by the transactions.
DORA handles the distribution of
computations while each thread
coordinates access to data in its subset.
This limits the interaction between
threads and removes some of the
contention problems. The routing /flow
of transactions from one thread to
another as they assess different parts of
the database is done with minimal
overhead as DORA makes use of
multicore systems high-bandwidth, low-
latency inter-core communications.

The main functionalities of
DORA are binding to worker threads to
subset of the database, work distribution
of each transaction to the transaction
executing threads according to the data
accessed by the transaction and last
functionality is interaction avoidance
during request executions using
centralized lock manager.
Database binding to worker threads is
done by setting a routing rule for each
database table. Worker threads are called
executors and each dataset is assigned to
an executor. Multiple dataset from a
single table can be assigned to one
executor. The routing rule according to
the authors is a mapping of sets of
records, or datasets, to worker executors.
Routing rule has no requirement, which
is that each possible record of the table
need to map to a unique dataset.
Routing rules changes periodically at
runtime to balance load and are managed

and updated by DORA. During
transaction execution, different actions
are made to the database. An action is a
subset of a transaction code that requires
access to the database. This access can
be to a single record or small sets of
records from a single table. A graph of
these actions to the database is known as
a transaction flow. For DORA to
distribute/route transactions from one
executor to another, it needs to know the
action and subsets of database which the
action that a transaction executes. This it
does by translating each transaction to a
transaction flow graph. Each action has
an identifier, which is used to identify
the records the action needs to access.
This identifier can be a set of values for
the routing field (routing field can any
combination of the columns of the table)
or an empty space (actions without any
routing field) depending on the type of
access required. The more specific an
action identifier is, the more easily the
transaction involved with that action
could be routed. Two actions however
can be merged if they have the same
identifier.

In order to control distributed
execution of a transaction and transfer
data between actions that have data
dependencies, DORA uses rendezvous
points or RVP. RVP or rendezvous
points are the shared objects across
actions of the same transactions. We
know that it can be possible for more
than one action to require access to the
same data and when this happens, it can
lead to bottlenecks even in DORA.
DORA addresses this issue by using
rendezvous points. Whenever two
actions are data dependent, execution of
a transaction are separated to different
phases by rendezvous points. A counter
was added to each RVP that is initially
set to the number of actions that need to

report to it. This counter is decremented
by every executor that has finished
executing an action and when the
counter becomes zero, the last executor
that zeroed the counter starts the next
phase. Figure 1 shows a demo on how a
transaction code (SQL), which would
usually be serially executed, is optimized
in by DORA.

DORA moves all actions that
makes use of the same dataset to one
executor. Three data structure are
associated with each executor and they
are an incoming actions queue, a
completed action queue and a thread-
local lock table. The incoming queue
contains incoming actions and these
actions are executed according to the
order they enter the queue. The executor

maintains isolation and ordering across
conflicting actions. And for this, it uses
the local lock table to detect conflicting
actions and the conflict resolution
happens at the action identifier level.
The local locks have a shared mode and
exclusive mode and an action needs to
acquire the local lock before proceeding.
When the lock is obtained, it executes
without a centralized concurrency
control. As for load balancing, the load
of each executor is monitored by the
Dora resource manager monitor and
actions are taken if the average load an
executor is assigned is a lot larger than
the rest. This action taken is usually the
resizing the data assigned to each
executor. This action however, is not
free.

Figure 1. Graphical representation of DORA’s execution plan using Shore-MT

SYNCHRONIZATION
PHASES
As transactions read and write to
memory concurrently, the transactional
memory system needs to check for
modifications and changes to a memory
region between two memory accesses in
other to maintain the consistency. This
validation is not cheap because, the read
set usually increases as the transaction
progresses. The read set is the list of
memory locations needed to be checked.

J. Schneider, F. Landau, and R.
Wattenhofer however, took another
approach to address the problem of
concurrency in transactional memory.
This approach is however different from
DORA in that it was based on Thread-
to-transaction policy. They introduced a
phase-based technique where time is
divided into two different phases: the
computational phases and commit
phases (the synchronization phase). This
technique is called Sync-phase
technique. Here, active transactions do
computations during the computation
phase and are allowed committing only
during the commit phase. Figure 2
shows a transaction read set validation in
ordinary DSTM and Sync-Phase DSTM.

Phases can be determined
through time or by some other means.
During the commit phase, transactions
that have something to commit, commit
the transaction and those with nothing to
commit remain idle during this phase
and have to validate their read set and
states after each commit phase.

J. Schneider, F. Landau, and R.
Wattenhofer proposed a technique of
which the basic idea is to execute
multiple commits at the same time to
make them look like one single commit
to an outside observer. The Sync-phase
technique alternates commit
(synchronization) and the computation

phases. Transactions that finish after a
previous commit phase have to wait until
the next commit phase. The duration of
each phase can be set according to
preference. This can be done either using
an algorithm that sets the phase duration
at runtime or by using fixed time
interval. As computations take longer
time, the duration of the computation
phase needs to be allocated a longer time
but not too much as the transaction
which finished their computation and
needs to commit will have to wait a long
time before committing. A middle
ground has to be found in other to get a
good performance. J. Schneider, F.
Landau, and R. Wattenhofer got rid of
the explicit use of the phase duration in
Sync-phase STM (Software transactional
memory) in order to increase
performance. There are two rules to start
and end commit phases:

1. A commit phase starts if a
fraction of all transactions is
ready to commit: Nc/N ≥c0 for c0
∈ [0, 1]

2. A commit phase ends if a
fraction of all transactions has
committed: Nc/N ≤c0 for 0≤ c1 <
c0

where Nc is the number of transactions
ready to commit, N is the total number
of active transactions (but temporary
sleeping).
Rule 1 prevents time wasted by waiting
for the next commit phase if enough
transactions can commit. Ideally, the
choice of c0 is made such that the cost of
waiting of the Nc transactions balances
the costs of validations of the other N -
Nc transactions.
Rule 2 tries to handle the case where
only few transactions wants to commit
which would be better to stop the
commit phase but also allow the

Figure 2. Validation of read sets in DSTM and Sync-Phased DSTM

transaction which are ready to commit to
commit

RadixVM
The problem of memory contention is
not only related to transactional memory.
Multithreaded applications, which run
on many core processors, also face the
same problem. Austin T. Clements, M.
Frans Kaashoek, and Nickolai Zeldovich
took another turn in looking into the
problem of multithread memory
contention not just using software
transactional memory but using virtual
memory systems. Using this approach,
they considered multithreaded
applications instead of transactions.

They focused on ways to make
memory allocation, freeing and page
fault using mmap and mumap calls
which applications use to allocate and
return memory to the operating system
perfectly parallelizable for threads of a
process that use non-overlapping regions
in the shared address space. Serializing
mmap and mumap calls applications can
easily be bottlenecked by contentions in
the operating system. RadixVM is a

virtual memory system designed to
enable fully concurrent operations on
shared address space for multithread
processes on cache-coherent multicore
computers in which virtual memory
system operations contend only if they
operate on overlapping memory regions.

RadixVM uses three different
ideas to enable mmap, mumap and
pagefault to scale perfectly in non-
overlapping memory regions. First, it
uses radix tree to record mapped
memory regions. Second, it uses a
scalable reference counter to track the
sates of physical pages to know if they
are free and no radix tree nodes are used
or not if they are not free. Third, it
avoids shooting down hardware TLBs
that don’t have the page mapping cached
whenever a page must be unmapped.
RadixVM itself was implemented in a
research kernel derived from xv6. One
of the main contributions of RadixVM is
reducing the number of cores that must
be contacted to do a TLB shoot down.
This was done by using a scheme that
tracks which cores may have each page

mapping cached to their TLBs, thus
allow RdixVM to send TLB shootdown
interrupts only to those cores, and
remove TLB shootdowns for mappings
not shared between cores. RadixVM
uses a radix-tree-based data structure,
which allows for concurrent non-
overlapping lookups. Deletion, and
inserts without using software
transactional memory. In RadixVM, if k
number of threads in the same process
deallocates memory, then the mumap
scale perfectly so, they will take the
same amount of time to execute and
does not depend on k. In the same way,
if one thread executes mmap and another
thread executes the mumap, they won’t
slow each other down provided they do
not use overlapping memory regions. If
they use overlapping memory regions,
then they would be serialized. RadixVM
uses Refcache a simple reference
counting scheme to keep track and
retake memory pages and radix nodes.
For instance, to free underlying physical
pages, it has to make sure that there is no
other thread using the same physical
pages and thus needs to make use of a
reference count to know when there are
threads using the physical pages. Let Nrc
be the number of reference counted
objects and Nc be the number of cores,
Refcache requires space proportional to
Nrc + Nc which is less than other
scalable reference counting mechanisms
which require Nrc x Nc. It implements a
per-core reference delta caches and is
targeted at workloads that can tolerate
some latency in reclaiming resources
and when increment and decrement
occur in the same core. For instance, the
same thread that faulted pages into a
mapped memory region also unmaps it.

In Refcache, each reference
counted object has a global count and
each core maintains a local, fixed cache

of deltas to objects’ reference counts.
Incrementing and Decrementing an
object’s reference count only modifies
the local cached delta that is periodically
flushed to the objects global reference
count. The true count can be gotten by
the summing an object’s global count
and the local delta for an object found in
the per-core delta caches. Refcache
divides time into periodic epochs (in
which each core flushes all the reference
count deltas in its local cache, applying
updates to the global reference count of
each object), which it uses to determine
a zero true count. Once the true count
drops to zero, there would be no updates
and thus when the global reference count
drops to zero and remains zero for an
entire epoch, it can be guarantied that the
true count is zero and the object is freed.

To support the tracking of
objects that may have been deleted
Refcache uses weak references, which
provide tryget operation that will either
increment the object’s reference count
and return the object, or will indicate
that the object has been deleted. The
weak reference is a pointer with a dying
bit (set when the object’s global
reference count first drops to zero) and a
back-reference from the referenced
object. When Refcache decides to free
the object, it first automatically clears
the both the dying bit and the pointer in
the weak reference and then frees the
object but if this doesn’t succeed, it
reexamines the object after 2 epochs
later.

PHASE RECONCILIATION

Design
Phase reconciliation design is based o
research in 4 different areas:
transactional memory, main-memory
database concurrency control, multicore
scalability, and Distributed consistency.
Phase reconciliation makes contributions
in each of these areas.

In transactional memory, since
transactions are often very large to use
hardware transactional memory, Phase
memory developed techniques to split
transactions and apply them using time
stamp ordering. This technique helps in
situations where spurious aborts are
common. Unlike Sync-Phase, it doesn’t
split transactions into compute and
commit phases and unlike DORA, it
doesn’t partition data and running one
partition per core but partitions local
copies of the data amongst cores for read
and write and provides a way to remerge
the data for access by other cores. In
Main-memory database concurrency
control, by restricting transaction
execution to phases, phase reconciliation
makes it possible for transactions to
commit without global communications.

In multicore scalability, Phase
reconciliation aimed to reduce the
burden shifted onto reads by other
methods by amortizing the effect of
reconciliation over many transactions
and making these ideas work for bigger
transaction systems.

In distributed consistency, by
restricting operations only during phases
but not between them, phase
reconciliation supports both scalable
implementations of commutative
operations and efficient implementations
of non-commutative operations on the
same data items.

Phase reconciliation was implemented in
a multicore, in-memory database called
Doppel. Transactions in Doppel once
begun run to completion without
communication or disk Input/output and
this means that transactions would not be
affected or blocked by disk stalls or user
stalls. Doppel also uses the concept of
worker threads just like in DORA. These
worker threads are one per core, run
transactions. Doppel records have types
and transactions interact with the
database using calls to operations. There
are different operations in Doppel. Some
of these operations return values, some
don’t return values. Some operations
modify the database and some don’t and
each database operations access just one
database record but users can build multi
record operations from single-record
ones using transactions. For instance, the
GET(k), returns the key k and doesn’t
modify the database.
During split and reconciliation phase,
Doppel marks contended database
records as splits. For these records,
operations that would normally contend
would proceed in parallel.

• At the beginning of each split
phase, Doppel initializes per-core
slices for each split record. There
is one slice per contended record
per core.

• During the split phase, all
operations on split records are
applied to their per-core slices.

• During the reconciliation phase,
the per-core slices are merged
back into the global store.

Figure 3 shows an example of a split
record with per core slices in two cores.

Fig 3. SR- Split record, PcS- Per core slice

To ensure good performance,
per-core slices must be quick to
initialize, and operations on slices must
be fast. To ensure efficiency, the
combination of applying the operation to
a slice and the merging of the slices
should have the same effects as the
operation would normally in some serial
order. To ensure correctness,
serializability must be ensured in
Doppel. However, the code required to
update a slice may be different from the
code needed to update a normal record.
There must exist a serial order of
transactions that split which satisfies:

• The result of merging per-core
slices with the global store is the
same as if the transactions had
executed, in the serial order,
against the global store.

• Every operation executed on a
split record gets the same return
value as if it had executed, in the
serial order, against the global
store.

• Every operation executed on the
global store gets the same return
value as it would in the serial
order.

Doppel supports several splittable
operations and to ensure these operations
are correct and fast, splittable operations
have to follow the following guidelines:

• Every splittable operation must
commute with itself.

• Every splittable operation must
return nothing.

• The system selects one splittable
operation per split record per
split phase. The selected
operation can change between
phases—for example, the
operation for key k might be M
in in one split phase, and Max in
the next—but within a given
phase, any operation but the
selected operation causes the
containing transaction to abort
(and retry in the next joined
phase).

• The size of a per-core slice is
independent of the number of
operations that executed on that
slice.

The splittable operations in Doppel are:
• MAX(k,n), MIN(k,n) – Replaces

the integer k with the maximum
or minimum of it and n.

SR	

SR	

PcS	
 PcS	

• ADD(k,n) – Adds n to the integer
k.

• OPUT(k,o,x) – Operation on
ordered tuples.

• TOPKINSERT(k,o,x) – Operation
on top-K sets.

More operations could also be easily
added.
To look into how Doppel executes
splittable operations, lets take for
instance MIN(k,n) which replaces k with
the minimum of k and n and returns
nothing.
When Doppel detects contention on
MIN(k,n) operations for some key k, it
marks k as split for MIN. When entering
the next split phase, Doppel initializes
per-core slices cj[k] with the global
value v[k]. When a transaction on core j
commits an operation MIN(k,n), Doppel
sets cj[k]← MIN{cj[k],n}. Key k is
temporarily reserved for MIN operations;
a transaction that tries to execute another
kind of operation on k will block until
the following joined phase. When the
split phase is over, Doppel merges the
per-core slices by setting v[k]← cj[k]←
minjcj[k]. If many concurrent
transactions call MIN(k,n) during a split

phase, Doppel executes them in parallel
on multiple cores with no coordination,
getting good parallel speedup over the
serial execution of conventional OCC or
locking.

Joined phase execution
Any transaction can be executed in a
joined phase. There is no notion of split
data and no per-core slices so, the
protocol treats all records the same. Thus
joined phase can use any concurrency
control protocol but if everything work
as planned, the joined phase will have
fewer conflicts since transactions that
conflicts should run in split phase, it
would make more sense to use a
protocol that would perform well when
conflicts are rare. This is why Doppel’s
joined phase uses optimistic concurrency
control. Each transaction executes
within a single phase. Any transaction
that commits in a joined phase executed
completely within that joined phase.
Doppel thus cannot leave a joined phase
for the following split phase until all
current transactions commit or abort. Fig
4a shows two transactions running in
joined mode.

 (a) (b)
Figure 4. (a) Concurrent transactions executing on different cores in joined phase. (b)
Concurrent transactions executing on different cores in split phase.

Split phase execution
Some transactions that would normally
conflict can be executed in parallel in
split phase. Split-data operations
execute on per-core slices. A transaction
that invokes an unselected operation on a
split record will be aborted and stashed
for restart during the next joined phase.
Doppel doesn’t need to lock slices or
check their version numbers since the
slices are invisible to concurrently
running transactions. Just as in joined
phase, any transaction that commits in
split phase executed completely within
that same split phase; Doppel does not
enter the next joined phase except all of
the split-phase transactions commit or
abort. Fig 4b shows a split phase, with
each transaction writing to per-core
slices.

Reconciliation phase execution
This phase comes after a split phase.
During this phase, each core stops
processing transactions and merges its
per-core slices with the global store.
This involves serial processing of the

per-core slices since each core has to
lock the global record, updates the value
and the releases it. But the expense of
serial processing is amortized over all
the transactions that executed in the split
mode. The per-core slices are then
cleared and the database enters the next
joined phase.

Coordinator threads manage transitions
between phases. Phase transitions occurs
in 3 steps:

1. Coordinator publishes the phase
change in a global variable.

2. All Workers check this variable
and if a change is noticed, they
stop processing transactions in
the current phase, acknowledge
the change and wait for
permission to continue.

3. Coordinator releases the workers
and they start executing
transactions in alternate phase.

For instance, to	
 initiate	
 a	
 transition	

from	
 a	
 split	
 phase	
 to	
 the next joined
phase, the coordinator publishes the
phase change in a global variable. When

a split-phase worker notices a transition
to the reconciliation phase, it stops
processing transactions, merges its per-
core slices with the global store, and
then acknowledges the phase transition
and waits for permission to proceed.
Once all workers have acknowledged the
change, the coordinator releases them to
the next joined phase; each worker
restarts any transactions it stashed in the
split phase and starts accepting new
transactions. It is safe for reconciliation
to proceed in parallel with other cores’
split-phase transactions since
reconciliation modifies the global
versions of split records, while split-
phase transactions access per-core slices.
The Doppel coordinator usually starts a
phase change every 20 milliseconds, but
feedback mechanisms allow it to flexibly
adjust to the workload.

To decide which transaction to
move to execute in split phase, Doppel
samples transactions conflicting record
access during the joined execution and
keeps a count of which records are most
conflicted and by which operations.
During transition to split phase, a
coordinator thread examines these
counts and mark the most conflicted
records as split data for the next phase.
Each cores reads this list before the start
of the next phase in order to know which
records are restricted. And to decide
which transaction to move back to
execute from split phase to joined phase,
Doppel samples which transactions are
stashed due to incompatible operations
on split data during the split phase.
Doppel also supports manual data
labeling.

Doppel is implemented as a
multithreaded server written in Go and
runs one worker thread per core, and
also one coordinator thread which is
responsible for changing phases and

synchronizing workers when progressing
to a new phase. Doppel uses channels to
synchronize phase changes and
acknowledgements between the
coordinator and workers. Workers read
and write to a shared store, which is a set
of key/value maps, using per-key locks.
The maps are implemented as hash
tables.

Experiments and Discussion
In this section we are going to look into
the experiment performed by these
different approaches to solving memory
contention problem. I would have
wanted to compare the throughput of all
the approaches side by side but they all
based their experiments on different
measurements. Thus, in this section we
will be discussing some of the
experiments performed by these
approaches, the good and the
shortcomings of the different
approaches.

 First let us look into DORA
which came in 2010. To show the
difference between thread-to-transaction
and thread-to-data, the performance
overhead of critical section contention of
DORA and was measured against a
thread-to-transaction. It depicts the
throughput per CPU utilization attained
by a state-of-the-art storage manager as
the CPU utilization increases.
Transactions from three OLTP
benchmarks: Nokia's Network Database
Benchmark or TM-1 [19], TPC-C [20],
and TPC-B [1] were used. Transaction
accesses only 1-4 records, and must
execute with low latency even under
heavy load. A database of 5M
subscribers (~7.5GB) was used. The
result of this is shown in Fig 5. The
result gotten shows that as the machine
utilization increases, the performance

per CPU utilization drops for the baseline.

 Fig 5. The time breakdown of the performance of in executing transactions from TM-1,
TCP-C and TCP-B

For the experiment, a conventional
transaction processing system Shore-MT
was used as the baseline. I would assume
that at that time, this is a state of the art
system to be used for a comparison. The
bad performance in the baseline can be
attributed to the uncoordinated and
arbitrary access pattern of each
transaction and since transactions run on
separate threads, they tend to contend
with each other during shared data
access. This is one of the problems phase
reconciliation tries to solve. The
downside is that the over head of cross-
partition transactions is significant, and
finding a good partition can be difficult.

The second approach is
synchronization phases, which came
later in 2011 with the idea of dividing
time into different phases in other to
speed up transactional memory. They
implemented this idea in three ways:
clock driven, phase flag and rule based.

The first uses phases of fixed length and
is clock driven. The second uses phases
that depend on a flag implemented in the
software and the third uses a global
counter that is incremented when ever a
transaction commits.	
 A transaction only
needs to validate its read set, given that
the commit counter changed since the
last validation. These implementations
and the non sync-phase DSTM were
compared using (a)sorted list, (b)global
counter and (c) independent counter
benchmarks. The results gotten in Figure
6 shows that non-phased DSTM always
performed worse with others varied. It
would have been interesting to compare
this with DORA to see the improvement
in throughput against the thread-to-data
systems. The down side of this approach
is how to select the optimal duration for
each phase.

 (a) (b)

 (c)

Figure 6. Comparison of the different implementations of DSTM.

The next is RadixVm that came
in 2013 and where interested in virtual
memory. The goal was to achieve full
concurrent operations on shared address
spaces for multithreaded processes on
cache-coherent multicore computers.
They argued that some of the features in
software transactional memory was not
really explained well to be used in a
virtual memory system so they wanted to
allow some of these concurrent features
for non overlapping inserts, delete and
look ups without the need for STM and

also to improve the performance of TLB
shootdowns by using a radix-tree data
structure. Even though they succeeded
and there were a lot of experiments that
proved that, there was a downside to it.
Since radix a tree is less compact than
the binary tree representations of virtual
memory metadata, the memory overhead
increased in RadixVm and this can be
attributed also to the fact that page tables
are per core instead of shared. Figure 7
shows the difference in memory usage.

Figure 7. Memory usage for alternate VM representations.

Now, phase reconciliation came
in 2014 to take the best of each of these
together in phase reconciliation on
transactional memory. They were
interested in making transactional
memory faster and better than 2PL and
OCC. They were inspired by the
different approaches before them. From
Sync-phases, it took the idea of splitting
transactions up into computation and
commit phases but modified it. Phase
reconciliation doesn’t split transactions
but assign transactions to different
phases, based on the type of data they
access and the type of operations they
perform. From DORA, it took the idea
of partitioning data and running one
partition on one core but modified it.
Phase reconciliation doesn’t partition
data but partitions local copies of data
amongst cores for write and provide a

way to re-merge the data for access by
other cores. From Doppel, it took the
idea of using per core counters and the
reconciling the per-core data structure
when they execute but makes the
performance burden by amortizing the
effect of reconciliation over many
transactions. The contribution of phase
reconciliation was to make these ideas
work in a larger transaction system.
Figure 8 shows the different
comparisons of Doppel, OCC and 2PL.
Figure 8 (a) shows the total throughput
for INCR1 as a function of the
percentage of transactions that increment
the single hot key, (b) shows the total
throughput for INCRZ as a function of
the zipfian distribution parameter
(∝)and (c) shows the RUBiS-C
benchmark.

 (a) (b)

 (c)

Figure 9. Performance test on Doppel, OCC and 2PL

From the Results of the performance
test, it is obvious Doppel performed
better. In the INCR1 microbenchmark,
there are 1M 16-byte keys, and each
transaction increments the value of a
single key. There is a single popular key
and the percentage of transactions,
which increment that key is varied; each
other transaction randomly chooses from
the not- popular keys.

In the INCRZ microbenchmark,
there are 1M 16-byte keys. Each

transaction increments the value of one
key, chosen with ∝ (Zipfian distribution
of popularity). The vertical line indicates
when Doppel starts splitting keys.
Doppel works well in larger
transactional system

Conclusion
These papers had one thing in common.
They had the same goal, which is to
solve the problem of memory contention
by processes. Due to the exponential

growth of cores on a chip, this problem
became more and more critical and had
to be addressed. There all tried
addressing this problem in different
ways each with its stronghold and
downside. Phase transaction tried getting
the best of the earlier approaches to

make transactional memory more
efficient. It would have been interesting
if there were a comparison of current
thread-to-transaction systems and
thread-to-data systems to see which one
is really better now.

REFERENCES

[1] Neha Narula, Cody Cutler, Eddie
Kohler, and Robert Morris.
Phase Reconciliation for
Contended In-Memory
Transactions. In OSDI, pages
511–524. USENIX Association,
2014.

[2] Pandis, R. Johnson, N.

Hardavellas, and A. Ailamaki.
Data-oriented transaction
execution. PVLDB , 3(1-2):928–
939, 2010.

[3] J. Schneider, F. Landau, and R.

Wattenhofer. Synchronization
phases (to speed up transactional
memory). Technical report, July
2011.

[4] A. T. Clements, M. F. Kaashoek,

and N. Zeldovich.
RadixVM:Scalable address
spaces for multithreaded
applications. InEu-rosys, pages
211–224. ACM, 2013.

