
	

Efficiency and Performance of Search Algorithms on
Real Applications

Uchenna Akujuobi

Uchenna.akujuobi@kaust.edu.sa
King Abdullah University of Science and Technology	

ABSTRACT
Okwe is a popular game played by the
Igbo people of south-eastern Nigeria.
This game is a member of the big
Mancala family game. This paper
presents an artificial intelligence (AI)
designed to play Okwe efficiently. This
paper also tries to show the difference in
efficiency and performance in using
different search algorithms to design the
AI. The search algorithms used in this
paper are Random/Brute force, heuristic,
minimax and alpha-beta algorithms. The
result of this work is a program capable
of winning human opponents.

Keywords
Game theory, minimax, alpha-beta,
heuristic, brute force, mancala, okwe,
mancala game

INTRODUCTION

Okwe is a variant of the mancala
game a two-player board game played
over the world. More than 800 names of
traditional mancala games are known,
and almost 200 invented games have
been described [1]. Okwe is played on a
board with 12 holes, 6 each of which
belong to a player and the other 6
belonging to the opponent. Each player
has 1 bigger hole at each end where
captured seeds are placed. The game is
also played on the ground also where the
holes are carved into the ground.

At the beginning of the game,
each of the 12 player holes contains 4

seeds each. These seeds might be stones,
marble, palm kernel, but usually, round
pebbles are used. Okwe is a two player
alternating game, the goal being to
capture more seeds than the opponent. A
turn consists of picking the seeds in any
hole on the player’s side and placing
each seed into each hole in an anti-
clockwise direction. The game starts by
scatting the start configuration of 4 seeds
in each hole (cell). In this paper, I will
use cell to represent holes. To capture
the seeds in a cell, the total number of
seeds in that cell must be completed to 4
(usually after the first round of play).
Okwe has 5 rules:

• A player must begin his move
from his own area

• When a player makes a move, he
must take all the seeds from the
selected cell

• He cannot capture seeds from his
opponent’s cells except if the
seed completing the cell is the
last seed he has.

• A player should only stop
playing only when the last seed is
placed in an empty cell.

• When there are only 8 seeds on
the board, the last player to
capture seeds would take all the 8
seeds.
Figure 1 shows the start state of

the board at the beginning of the game.
The search space of the game is

not so huge but it has some rather
interesting characteristics when it comes

	

to developing an artificial intelligence
for it. To the best of my knowledge,
there is no publication in any literature
that deals with building an AI for Okwe
up to now.

Even though the Search space is
not huge, different search algorithms can

either be ineffective with high
performance or be effective or have low
performance. In order to design an
efficient game, an efficient algorithm
with good or close to optimum
performance must be used.

Figure 1. The initial start state of the game

One open problem in the study of
Mancala family of games is as follows:
What heuristics can be used for playing
Mancala games by a computer [2].

In this paper, I propose heuristics
for the game and implement the game
with some algorithms and run
experiments and compare results to
determine the best of them all. This
program was implemented both in C++
(visual studio) and C# (unity) but the
experiments are done mostly with the
C++ console implementation to avoid
delays in graphical rendering and
animations but real life experiments for
testing the efficiency would be done on
the C# implementation since it doesn’t
consider time taken but the number of
wins, lose or draws.
The rest of the paper is organized as
follows: section 2 talks about the game
classification, section 3 talks about the
implementation, section 4 talks about the
experiments and results gotten, section 5
talks about the conclusion and section 6
lists some of the future works.
	

2. CLASSIFICATION
Okwe can be classified as a two-player
zero-sum game. The simplest
mathematical description of a game is
the strategic form [3]. In strategic form,
a two player zero-sum game can be
described by a triplet (X,Y,A), where
X is a nonempty set, the set of strategies
of player I
Y is a nonempty set, the set of strategies
of player II
A is a real-valued function defined on
X×Y.(Thus, A(x, y)is a real number for
every x∈X and every y∈Y.)

The interpretation is as follows.
Simultaneously, player I chooses x∈X
and Player II chooses y∈Y, each
unaware of the choice of the other. Then
their choices are made known and I wins
the amount A(x, y) from II [3]. This
means a win from Player I is an
automatic loss for Player II. Thus, a win
in Okwe is represented by +1, a loss by -
1, and a draw by 0. The game task
environment can be specified using
PEAS (Performance measure,
Environment, Actuators, sensors).

Okwe uses a heuristic value to
evaluate the next possible action to take

1	 2	 3	 4	 5	 6	

1	 2	 3	 4	 5	 6	

	

up to a given depth. The out come of the
game is used as the performance
measure (i.e win, lose or draw). It is
fully observable, static, deterministic,
sequential and discrete and the
environment can be interpreted as a
competitive multi-agent. The agents in
Okwe are rational.

3. IMPLEMENTATION
In this section, I will present the
different implementation methods and

algorithms used in this paper. First, I
will present the heuristic function used
for the search tree. Then, second, I will
present the brute force search algorithm,
heuristic based search, minimax
algorithm and the alpha-beta (pruning)
search algorithms. The board is
represented by 2 arrays. One is a 2x6
array, which represents the holes for the
game play, and the other array is a 2x1
array, which represents the number of
seeds captured by each player.

Figure 2. An Example of the board heuristic evaluation for player I

3.1 HEURISTIC FUNCTION
The heuristic function is a way to inform
the search about the direction to a goal.
It provides an informed way to guess
which neighbor of a node will lead to a
goal [4]. In Okwe, the higher the seeds
captured, the better the move. But also,
we should also not forget the number of
seeds captured by the opponent after a
given action. For instance, if it is player
I’s turn, and there are only two possible
actions A1 {Xmc1, Xoc1} and A2 {Xmc2,
Xoc2}. Where Xmc is the total seed that
would be captured by Player I and Xoc
the total seeds to be captured by Player
II. One can’t say for sure that action A1
is better than A2 just because Xmc1> Xmc2
since it is possible that Xoc1> Xoc2. Thus,
the total seeds captured by the opponent
should be taken into consideration in the
heuristic function.

 The heuristic function is given
by the total number of seeds capture by a

player subtracted from the total number
of seeds captured by the opponent. Thus,
the higher the value, the better chance
the move has to be selected. Figure 2
shows an example of heuristic
evaluation during the game for player I
using the heuristic function. In the
example, the best action for player I is to
select the seeds to play from the 6th hole.

3.2 RANDOM/BRUTE FORCE
SEARCH
This search algorithm does need to use
the heuristic function and doesn’t try to
evaluate the outcome of any action. This
search algorithm randomly selects an
action and checks if it is a possible
action or not. If the test fails, it chooses a
different action and repeats the same
test. This it will do till it finds a possible
action and then makes that move. In the
field of algorithms, it is sometimes
helpful to make decisions randomly

∂	 ∂	 ∂	 ∂	 ∂	

4	 -‐8	 0	 -‐4	 -‐4	 8	
1	 2	 3	 4	 5	 6	

1	 2	 3	 4	 5	 6	

	

instead of spending lots of time on
deciding which alternative is the best
choice, especially when the time
required to obtain the optimal choice is
prohibitively high [5]. Obviously, this is
not an efficient algorithm but I used it to
evaluate the efficiency of the other
algorithms and the result gotten was
interesting.

 In order for it not to go into an
infinite check-select-check execution
since it possible that all six actions might
not be valid, I added a stop after each 10
random selections without making an
actual move (couldn’t select a possible
action) it gives up its turn. The
advantage of brute force search
algorithm is that it would require less
time to make a move if it actually finds a
possible action and also doesn’t require
any extra space.

3.3 HEAURISTIC BASED SEARCH
This search takes each node and returns
the heuristic value using the heuristic
function. The action to be taken is
determined by evaluating the heuristic
values of each node and then the node
with the highest heuristic value is
selected. Typically a trade-off exists
between the amount of work it takes to
derive a heuristic value for a node and
how accurately the heuristic value of a

node measures the actual path cost from
the node to a goal [4]. In this
implementation, I went for the later.

3.4 MINIMAX SEARCH
A competitive 2-player game such as
Okwe can be represented using a tree.
The players’ move can be modeled using
a structure known as adversarial game
tree [5]. In minimax, the current player
is denoted as MAX whose goal is to
select the best move available and the
opponent is denoted as MIN whose goal
is to reduce the best possible outcome of
any MAX move. For an efficient AI,
MAX must choose a strategy that will
lead to a winning terminal state no
matter what MIN does, and the strategy
includes the best move for MAX for
each possible move by MIN. Minimax
assumes it is playing against an infallible
opponent and, therefore, must determine
the optimal strategy for MAX, and thus
have to decide what the best first move
is.

The root of the search tree is the
start state of the game board and the
children nodes are the possible moves
for the current player with children
nodes, which are the moves available for
the opponent, and so fourth. Figure 3
shows an example of the game tree for
Okwe.

1	 2	 3	 4	 5	 6	
1	 2	 3	 4	 5	 6	

1	 2	 3	 4	 5	 6	
1	 2	 3	 4	 5	 6	

1	 2	 3	 4	 5	 6	
1	 2	 3	 4	 5	 6	

1	 2	 3	 4	 5	 6	
1	 2	 3	 4	 5	 6	

1	 2	 3	 4	 5	 6	
1	 2	 3	 4	 5	 6	

1	 2	 3	 4	 5	 6	
1	 2	 3	 4	 5	 6	

1	 2	 3	 4	 5	 6	
1	 2	 3	 4	 5	 6	

1	 2	 3	 4	 5	 6	
1	 2	 3	 4	 5	 6	

…………

…………
Figure	 3.	 The	 game	 tree	 of	 Okwe	 showing	 the	 possible	 max	 moves	 and	 one	 possible	
min	 move	 at	 the	 first	 level	

	

MINIMAX-VALUE (n)=
𝑈𝑇𝐼𝐿𝐼𝑇𝑌 𝑛 𝑖𝑓 𝑛 𝑖𝑠 𝑎 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 𝑠𝑡𝑎𝑡𝑒

max 𝑠 ∈ 𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟𝑠 𝑛 𝑀𝐼𝑁𝐼𝑀𝐴𝑋 − 𝑉𝐴𝐿𝑈𝐸 𝑠 𝑖𝑓 𝑛 𝑖𝑠 𝑎 𝑀𝐴𝑋 𝑛𝑜𝑑𝑒
min 𝑠 ∈ 𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟𝑠 𝑛 𝑀𝐼𝑁𝐼𝑀𝐴𝑋 − 𝑉𝐴𝐿𝑈𝐸 𝑠 𝑖𝑓 𝑛 𝑖𝑠 𝑎 𝑀𝐼𝑁 𝑛𝑜𝑑𝑒

Formula 1. Calculating a minimax function

A minimax search is a recursive
algorithm for finding the next move for
any given player. All the possible
continuations to the desired level are
considered, evaluated and assigned a
value using the heuristic function as it
goes. The minimax value is normally
determined using formula 1 [6]:
 The leaves of the game tree are
the final game states where the outcome
of the game is obvious. In order to
determine the best move, the whole tree
is searched. The amount of work a
minimax search generates increases
exponentially as a move is examined to a
greater depth [6]. In minimax, if the
maximum depth of the tree is m, and
there are b legal moves at each point,
then the time complexity is O(bm) , and
the memory complexity is O(bm). In
Okwe, the branching factor b is 6 thus,
the time complexity is O(6m) which is
infeasible. I reduced the memory
complexity by generating successors one
at a time which reduced the complexity
to O(m) which is better.

3.5 Alpha-beta Pruning
As seen from section 3.4, the minimax
search algorithm is efficient but not very
good in performance especially when the
search space is huge. The time
complexity has to be reduced in other to
get a good performance. Alpha-beta

pruning does this. Alpha-beta is a tree-
search procedure that is faster than
minimax but still equivalent in the sense
that both procedures will always choose
the same depth-1 successor at best, and
will assign the same value to it [9].

Alpha-beta is faster because it
skips checking the branches which
values doesn’t affect the outcome taken,
thereby pruning the branches. On getting
to these branches, alpha-beta algorithm
jumps over them to the next available
branch. This action of jumping over
these branches is called Alpha or beta
cut off. Alpha, which is the maximum
value of possible actions found at any
choice point along the path for MAX,
can be associated with MAX. Beta with
is the opposite of Alpha is the minimum
value of possible actions found at any
choice point along the path for MIN, and
can be associated with MIN.

There are many ways to
implement the alpha-beta algorithm. At
first, I tried using stack implemented
using singly linked list, but noticed some
overhead in creating a new node,
pushing and popping the values
whenever we want to access the value.
Thus, I decided to just use a single
variable on each branch that either
shows the MIN value or the MAX value,
which increased performance.

	

Figure 4. Screenshot of the game during game play

4 EXPERIMENTS

To show the efficiency and performance
of the algorithms in playing the game, I
conducted some experiments. In this
section, I will discuss the results gotten
from the experiments. Figure 4 shows a
screen-shot of the developed game
screen.

Performance
To show the performance of the
minimax and Alpha-beta search, I
measured the time taken for both the
minimax and Alpha-beta algorithms to
make a play. This includes the time of
tree transversal and the time of playing
the game. This measurement was made
on the first gameplay. Figure 5 shows
the time taken for both algorithms. From
the graph, we can see that the time for
minimax grows exponentially and it is
obviously clear that alpha-beta is the
best when it comes to performance. This
is because of the large amount of state
visited by the minimax search.

Figure 5. Time taken for completing first
game move for alpha-beta and minimax.

Minimax visits the whole states, and
since in real world, the search space can
be very huge, minimax is not a feasible
option. Figure 6 shows the total number
of nodes visited by each algorithm. This
measurement also was made on the first
gameplay.

0	
20	
40	
60	
80	
100	
120	
140	
160	

1	 2	 3	 4	 5	 6	

Ti
m
e	
(s
ec
)	

Level	 (Depth)	

Minimax	

Alpha-‐
Beta	

	

Figure 6. Number of states visited by
both minimax and alpha-beta algorithms.

Efficiency
To show the efficiency of each
algorithm, I set each algorithm to play
against each other. Since alpha-beta is a
faster version of minimax, I used alpha-
beta as the AI algorithm in the mini
tournament. Table 1 shows the number
of seeds won by each search algorithm
and the number of steps taken in the
game. A step represents one complete
move by both players. Alpha-beta,
which is the most intelligent, played
better than others did. It however, drew

with another alpha-beta with a lower
depth. This is can be explained. Since
the game involves removing seeds from
the board, after a few steps (depending
on the players), the search space reduces
and using a lower search limit would be
as efficient as using a higher search
limit.
 To show the efficiency of the
search algorithms in real game play, I
explained the game to people, made
them play the game once to get used to
the interface and rules, and after that,
they played against alpha-beta of limit 5
lookahead and the random brute force
search. Table 2 shows the result gotten
from this experiment. Only one person
could win the AI using the alpha-beta
search while the brute force suffered
some loss, some draws, and a win. This
clearly shows that the efficiency of the
alpha-beta search is high.

 Seeds Won by player I Seeds Won by player II Steps
Alpha-Beta level 6 vs
Random(brute force)

40 8 13

Alpha-Beta level 6 vs
Heauristics

28 20 15

Alpha-Beta level 6 vs Alpha-
Beta level 3

24 24 7

Heauristic vs Random(brute
force)

40 8 29

Table 1. Winning statistics of the Okwe AI

0	

1	

2	

3	

4	

5	

6	

7	

1	 2	 3	 4	 5	 6	

St
at
es
	 V
is
ite
d	

x	
10
00
00
00
	

Level	 (depth)	

Minimax	

Alpha-‐
Beta	

	

 Person 1 Person 2 Person 3 Person 4 Person 5 Person 6

Alpha-Beta (5) Win Win Win Win Win Draw

Random(Brute) Lost Draw Draw Lose Win Lose

Table 2. Win/lose results of AI against humans

5 CONCLUSION
A move using minimax and alpha-beta
are more efficient the other search
algorithms in this paper but they are
much slower than others because of the
time taken to “think” of a move to make.
The others don’t need to do these
classifications and are thereby, faster to
make a possible move. This is a typical
efficiency and performance tradeoff.

Minimax visit all nodes. Which
might lead to not only to performance
problems but also to efficiency
problems. For instance, using the game
rules, it gets to a state where the move
goes into an infinite sequence loop and
since minimax visits all states, it gets to
this loop state and goes to an infinite
loop. I treated this as a special case in
minimax but alpha-beta solves this
problem but cutting out the branch
containing the “non-useful” nodes. The
probability of the alpha-beta getting into
such problems is low.

 The number of states alpha-beta
visits is much lesser than in minimax,
but it is also huge. In applications with a
huge number of states, this might not be
the best search to use. Thus, other faster
algorithms have to be considered.

6 FUTURE WORK
The search algorithms implemented in
this paper are not the only ones
available. I would like to extend this
efficiency and performance test to other
algorithms to show how good or how
bad they scale for real applications like
Okwe. There are also some graphical
and performance changes I need to make
to the game for it to perform well. Some
of the changes include: Implementing
the game using vectors to make it faster
and providing a better UI for user
experience. Finally, I would like to
release the game to the public both on
mobile phones and on computers.

	

REFRENCES

[1] "Mancala." Wikipedia: The Free
Encyclopedia. Wikimedia
Foundation, Inc. 22 July 2004.
Web. 21 October 2014

[2] Donkers, H.H.L.M., Uiterwijk,
J.W.H.M. and Voogt, A.J.D.V.,
Mancala Games- Topics in
Artificial Intelligence and
Mathematics. Step by Step
Proceedings of the 4th
Colloquium Board Games in
Academia, 2002

[3] Thomas S. Ferguson, Game
Theory, Second Edition, 2014.
Mathematics Department,
UCLA,pg 4,7

[4] David Poole and Alan
Mackworth, Artificial
Intelligence: Foundations of
Computational Agents,
Cambridge University Press,
2010

[5] Hong, Tzung-Pei, Huang, Ke-
Yuan and Lin, Wen-Yang.
"Adversarial Search by
Evolutionary Computation.."
Evolutionary Computation 9 , no.
3 (2001): 371-385.

[6] Russel, S. and Norvig, P..
Artificial Intelligence: A Modern
Approach. : Pearson Education
Inc., 2003.

[7] Borovska, Plamenka and
Lazarova, Milena. "Efficiency of
parallel minimax algorithm for
game tree search.." Paper
presented at the meeting of the
CompSysTech, 2007.

[8] Slagle, James R. and Dixon, John
K.. "Experiments With Some
Programs That Search Game

Trees.." J. ACM 16 , no. 2
(1969): 189-207.

