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Abstract—Finding popular datasets to work on is essential
for data-driven research domains. In this paper, we focus on
the problem of extracting top-k popular datasets that have
been used in data mining, machine learning, and artificial
intelligence fields. We solve this problem on an attributed cita-
tion network, which includes node content information (text of
published papers) and paper citation relations. By formulating
the problem as a semi-supervised multi-label classification one,
we develop an efficient deep generative model for learning
from both the document content and citation relations. The
evaluation on a real-world dataset shows that our proposed
model outperforms baseline methods. We then apply the model
further to reveal the top-k frequently cited datasets in selected
areas and report interesting findings.

Keywords-Deep Generative Models, Semi-supervised Learn-
ing, Document Classification, Multi-label Classification, Cita-
tion Network

I. INTRODUCTION

In this paper, we target on addressing a real application
problem: what are the top-k popular datasets used for
evaluation in a given research field? The knowledge of
the top-k popular dataset used in any given research field
provides a better understanding of the popular datasets used
in that field; which will provide more insights on the topics
and also, hints on datasets to look into when working on
topics under/related to the field. Although there has been
no prior research paper on the extraction of popular datasets
for given topics given a citation network, making an internet
search for “top datasets” yields a search result page with lots
of blogs and write-ups of the top datasets used in research
which is often based on personal opinion. However, this
fails to show the use or usefulness of the reported datasets
in different fields of research. This paper is based on the
analysis of academic papers and thus, provides a narrower
and more realistic report.

We formalize this practical problem as a semi-supervised
multi-label learning in attributed graph problem. We use
the available resources in a data-driven search engine called
Delve1, which provides what datasets were used for evalua-
tion in more than 2 million papers including those published
at prestigious venues in the broad area covering data mining,

1https://delve.kaust.edu.sa

machine learning, computer vision, and others [1]. To ag-
gregate the evaluation datasets in a given research field, we
are left with the problem to find out the published papers in
this field. Due to the overlapping nature of research areas,
one academic paper usually can be labeled with multiple
topic tags. For example, a paper can fit into both graph
mining and neural networks subfield category if it applies
neural networks to graph problems. The labels are mainly
determined by the paper content and supplemented by the
related papers that it cited in the reference and those that
are citing it (utilizing the additional topological information
has been observed to lead to better document classification
models [13] [30]). Therefore, we have a multi-label classi-
fication problem to address given the paper content and its
citation relations (as known as attributed citation graph).
With the help of partially available label information, a semi-
supervised learning approach is desired, to provide more
accurate classification results than unsupervised ways.

To address our semi-supervised multi-label learning prob-
lem on attributed citation graph, we need effective new
solutions. There exist some approaches for semi-supervised
multi-label classification that can be directly applied on
paper content [10], [14], [23]. However, citation graph
information cannot be easily adopted in them. A potential
solution is to employ attributed graph embedding that repre-
sents each node by a low-dimensional vector [3], [18], and
then apply semi-supervised multi-label classification on the
embedding vectors. However, the weakness is the indepen-
dent process of embedding and semi-supervised learning,
which limits classification accuracy. One can also apply
semi-supervised attributed graph embedding [8], [13], [30]
to use the partially available labels to guide the attributed
graph embedding. However, these approaches work in multi-
class scenarios, rather than multi-label cases. Last but not
least, some of these approaches (e.g., [13]) do not scale well
to our problem as it is only scalable to the number of edges.

In this paper, we investigate the use of deep generative
models (DGM) for solving our problem because of its scal-
able and expressive nature, which allows for more complex
latent distributions to be learned. In order to learn from both
the text and graph information, the frequently used naive
approach is the concatenation of both input features. How-



ever, this limits the expressive nature of DGM especially
when the inputs are generated by different distributions
(e.g., Gaussian and Bernoulli). We increase the flexibility
of deep generative models by modeling two input layers,
to better capture the intrinsic information from the graph
topology and node content information. The unified model
is trained from end to end and produces accurate labels
for documents in different domains, which allows us to
aggregate the documents and their used evaluation datasets
further, and ultimately report the top-k popular datasets in
different domains.

Our contributions in this work are summarized as follows:

• We propose a deep generative model for the semi-
supervised multi-label learning problem in attributed
graphs.

• We validate the proposed model on the real-world
attributed citation graph in Delve system and show that
it outperforms the state-of-the-art approaches.

• We classify 886,109 documents and extract the top-k
popular dataset resources in 20 subfields.

II. RELATED WORKS

A. Attributed Graph Mining

Attributed graphs are graphs in which nodes are associated
with attributes (in our case text). Many real-world network
data exist in attributed form. For this reason, there has been
a rise in the demand and development of efficient algorithms
that can handle attributed graphs [4], [29], [33]. A citation
network is said to be attributed if its nodes and/or edges
bear some additional information like the document texts
or citation contexts. Some recent works, including Plane-
toid [30] and Graph Convolutional networks (GCN) [13]
etc., experimented on attributed citation networks, where
each document in the citation network has text informa-
tion. Based on early works on graph embeddings (see for
example [24]), Yang et al. [30] introduced node labels to
obtain a semi-supervised embedding and applied a feed-
forward neural network to extend to an inductive setting.
Kipf and Welling [13] took a first-order approximation of
the graph spectral convolution [6] for semi-supervised node
classification and obtained state-of-the-art performance. The
proposed GCN has a computational complexity scaling with
the number of edges and is limited to transductive learning.
These limitations are tackled through sampling methods [8].
In this work, we build a semi-supervised model that can
deal with moderately dense graphs with millions of nodes,
without sophisticated graph convolutions. In contrast, our
model is simple to implement: we first learn a traditional
network embedding [7], and then utilizing both labeled
and unlabeled samples to fuse this embedding with node
attributes which have text and multiple labels.

B. Deep Generative Models for Semi-supervised Learning

Deep generative models [5], [12], [20] are powerful deep
neural network models to learn data distributions based on
prior parametric assumptions. This framework was applied
to a semi-supervised setting by Kingma et al. [12]. In a
simplified scenario, an observed data sample x is assumed
to be generated by p(x | z) that is parameterized by a neural
network, where z acts as a latent representation distributed
according to some simple parameter-free distribution p(z).
By assuming a corresponding inference model given by
q(z |x) that approximates the posterior p(z |x) and is pa-
rameterized by another neural network, all model parameters
can be learned by variational inference. As noted by Maaloe
et al. [20], the proposed model is not easy to be trained
end-to-end with more than one layer of stochastic latent
variables. Recent works such as the Ladder network [26]
have improved on the performance with end-to-end training.

The auxiliary deep generative approach [20] enriches
the flexibility of the generative model by adding a latent
auxiliary variables a, so that the generative model is given
by p(x, z, a) = p(x | z, a)p(z, a). By assuming a para-
metric inference model q(a, z |x), the marginal q(z |x) =∫
q(a, z |x)da can be a non-Gaussian distribution and there-

fore can fit better the true posterior p(z |x). If the data
is (partially) labeled, a discrete latent variable y can be
introduced so that the generative model is specified as
p(x, y, z, a) = p(y)p(z)p(a | y, z)p(x | y, z, a). Our propo-
sition is based on this auxiliary approach while specifically
designed for graph data sets to incorporate both link struc-
ture information and node attribute information.

III. DEEP GENERATIVE MODEL FOR SEMI-SUPERVISED
MULTI-LABEL DOCUMENT CLASSIFICATION IN

ATTRIBUTED GRAPHS

We first formally define our problem. Given an attributed
graph, e.g., a citation network, G = {V,E}, node set V is a
set of documents including a small subset Vl having known
labels, while the remaining documents Vu are unlabeled.
Note that we focus on the multi-label problem, where each
document can belong to more than one class, i.e., yi ∈ 2`,
where ` is the number of classes. The set of edges E are
citation links between the documents. Each document in the
network contains text information such as document title,
abstract, keywords, and full body text. With the intuition that
connected documents with similar text contents are likely
to share the same labels, a model f(T,X) conditioned on
both the topological structure X and the text information T
is expected to capture the intrinsic correlations between the
documents better, comparing to using only the topological
structure X [13]. Our problem is then defined as: given a
training set S = {(ti, xi, yi) : 1 ≤ i ≤ |Vl|}, the goal is
to produce a multi-label classifier that infers labels for Vu
with minimized errors [31].
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Figure 1: Probabilistic graphical model. The variables x
and t are the graph topology and text inputs respectively,
z is a latent variable, and y is the label variable. Each
incoming arrow to the variables is a deep neural network
with parameters θ and φ.

Due to the limited number of labeled samples, we model
our classification problem using generative models to learn
from both the labeled and unlabeled samples efficiently. Our
graphical model is shown in Figure 1. The variables x and
t are the graph topology and text inputs respectively, z is
a latent variable, and y is the label variable. In this work,
we obtain x of a node by applying node2vec [7], due to
its superior performance on representing the graph topology
information. In the generative model, both x and t jointly
depend on latent variable z and label variable y. In the
inference model, label variable y is determined by node
topology x and node content t, while the variable z captures
the intrinsic relationship among x, t and y.

By assumption, the generative model has a joint distribu-
tion p(t, x, y, z) = p(y)p(z)pθ(x | y, z)pθ(t | y, z), with

p(y) = Ber(y | γ),

p(z) = N (z | 0, I),

pθ(x | y, z) = N
(
x |µθ1(y, z), diag(σ2

θ1(y, z))
)
,

pθ(t | y, z) = N
(
t |µθ2(y, z), diag(σ2

θ2(y, z))
)
, (1)

where y is a random binary vector of length `, Ber(.| γ)
is a multivariate Bernoulli distribution with independent
random bits with activation probabilities specified by the
vector γ so that p(yi = 1) = γi (that is the probability for
the i’th bit activated). p(z) , p(x | y, z) and p(t | y, z) are

all assumed to be Gaussian distributions, with N (· |µ,Σ)
denoting a multivariate Gaussian distribution with mean µ
and covariance matrix Σ.

To infer the latent parameters, the model is optimized by
maximizing the lower bound on the likelihood of both la-
beled and unlabeled samples. For a labeled sample (t, x, y),
its log likelihood

log pθ(t, x, y) = log

∫
z

p(t, x, y, z)dz

has the variational lower bound

L(t, x, y) = Eqφ(z | t,x,y)
[
log

pθ(t, x, y, z)

qφ(z | t, x, y)

]
. (2)

For an unlabeled sample x and t, its log likelihood

log pθ(t, x) = log

∫
y

∫
z

p(t, x, y, z)dzdy

has the lower bound

U(x) = Eqφ(y,z | t,x)
[
log

pθ(t, x, y, z)

qφ(y, z | t, x)

]
, (3)

where qφ(y, z | t, x) = qφ(z | y, t, x)qφ(y | t, x), including

qφ(y | t, x) = Ber(y | γφ(t, x)),

qφ(z | y, t, x) = N (z |µφ(t, y, x), diag(σ2
φ(t, y, x))). (4)

The overall objective function is defined to maximize the
lower bound and meanwhile minimize the classification error
in labeled data. That is, to maximize

E =
∑

tl,xl,yl

L(tl, xl, yl) +
∑
tu,xu

U(tu, xu)

+ β
Nl +Nu
Nl

∑
tl,xl,yl

log q(yl | tl, xl),
(5)

where β > 0 is a hyper-parameter for weighting the
classification error. Nl and Nu are the numbers of labeled
and unlabeled samples respectively. More details of the
derivations can be found in the appendix. The Adam opti-
mizer is applied to minimize the cost function. The classifier
in Eq. (4) qφ(y | t, x) is then used to calculate probabilities
for unlabeled (tu, xu) belonging to each class. γ(t) and γ(x)
are activation vectors for multivariate Bernoulli distributions
given t and x respectively. Although we focus on multi-label
problems with continuous inputs, variables x, t, and y could
be of any distribution. The computational complexity of the
labeled and unlabeled cost functions in equations 2 and 3
is O(2l), where l = dim(y). We assume l is small enough
and tackling this complexity is left as a future work.

IV. EVALUATION ON CITATION GRAPH IN DELVE

A. Delve Citation Graph

We first evaluate the effectiveness of the proposed model
on classifying documents in Delve system. Note that this
is the only publicly available attributed graph with nodes



explicitly given in multi-label setting. The widely used
datasets for attributed academic document categorization are
the Cora, Citeseer, and the Pubmed dataset [27]. These
three datasets 2 are multi-class datasets (each paper having a
single class) and compose of 2708, 3327, and 19717 papers,
respectively. The full Cora3 is a multi-label attributed graph
dataset. However, the labels are organized in a hierarchical
tree structure. For example, placing a paper X under C++,
in turn places it under programming, and placed under
computer science. In this case, paper X will have labels
C++, programming, and computer science. Our application
problem is to find popular evaluation datasets in given fields,
which may have overlaps, but not in hierarchical structures.
In some papers [19], [28], DBLP four area dataset [9] is used
in a multi-label setting, by converting the keywords used in
each author’s publication or author’s publication venues as
the labels. However, since the aim is to extract information
from papers in different topic categories, using a dataset
like this might be redundant as publication venues often cut
across several topic ranges.

At the moment of writing this paper, the Delve database
is composed of more than 2 million scholarly publications
from more than 1,000 different conferences and journals in
various categories/domains. These scholarly publications are
linked together to form a citation network. Table I shows the
full graph statistics of the Delve citation network. For each
document (node in the citation graph), the available content
information includes title, author(s), abstract, publication
venue, keywords, and full body text when present.

A document can belong to more than one category. The
initial document labeling in the Delve citation graph was
conducted as a crowd-sourced project where participants
were asked to manually assign papers to one or more of 20
predefined categories gathered from the fields of machine
learning, data mining, computer vision, and robotics. These
categories were hand-picked and agreed by domain experts
to represent trending topics in these fields. See Table II
for the category list and the number of documents in each
category. Since the documents are extracted from different
conferences in these areas, they provide a diverse set of
citation information and semantics. There are 4477 labeled
documents in total. Each document on average has two labels
(max/min no. of labels in these papers are six/one).

To prepare the dataset from Delve, a preprocessing step is
applied in building the text features includes removal of stop
words, converting letters to lower case, and stemming using
the porter-stemming algorithm [25]. Then node text features
t are extracted by applying the latent semantic analysis
method on the document-term matrix features, resulting in
features vectors of 300-dimension. Node topological features
x are obtained by applying Node2Vec [7], which is a re-

2http://linqs.umiacs.umd.edu/projects//projects/lbc/
3https://people.cs.umass.edu/∼mccallum/data.html

Table I: Graph statistics of the Delve citation network

No. of nodes 2,116,429
No. of edges 9,434,474
No. of closed triangles 6,032,686
No. of open triangles 1,201,828,844
Fraction of closed triads 0.004995
Fraction of largest connected component 0.999662
Approximate full diameter 12

Table II: Mullti-label documents from Delve system

Category name Papers assigned
1 Information retrieval 922
2 Natural language processing 624
3 Clustering 301
4 Optimization methods 302
5 Gene and cancer (bioinformatics) 165
6 Tracking (computer vision) 478
7 Security and privacy 494
8 Time series 119
9 Graph mining & social network 295
10 Supervised learning 290
11 Feature selection & extraction 150
12 Rule learning 332
13 Semi-supervised & active learning 144
14 Agent systems (AI) 469
15 Recommendation 97
16 Unsupervised learning 83
17 Dimensionality reduction 58
18 Neural networks 164
19 Online learning 26
20 Multi-label classification 16

cently proposed skip-gram based graph embedding methods
that map each node to a d-dimensional vector, to the full
Delve citation graph (which is composed of over 2 million
nodes). The parameters of Node2Vec are set as p = 4
and q = 1 to keep in line with the typical values used
in Node2Vec [7]. We leave the default values of the other
Node2Vec parameters of d = 128, r = 10, l = 80, k = 10,
where d is the feature dimension, r is the number of walks
per source, l is the length of walk per source, and k is the
context size for optimization.

We train our model finally on 821, 976 papers after
excluding papers that have no outlink in the Delve cita-
tion graph. We use the random hyper-parameter search [2]
to determine the best latent layers dimension to use. All
implementations are conducted in Python using Tensorflow
libraries and run on GPU workstations.

B. Baseline Methods to Compare

For comparison, we evaluated the performance of several
supervised and semi-supervised algorithms on the Delve
multi-label dataset, and here report the performance of two
supervised and semi-supervised algorithms that gave the best
result, in the binary relevance framework.

Supervised Methods: Linear SVM (LSVM) is an imple-
mentation of SVM using a linear kernel, and Gaussian Naive
Bayes (GNB) is an extension of the Naive Bayes algorithm



commonly by assuming a Gaussian distribution.
Semi-Supervised Methods: Label propagation (LProp)

[34] and Label Spreading (LSpread) [32] are semi-
supervised algorithms where labels are propagated from
labeled to unlabeled nodes. The main difference between
the two algorithms is that Label propagation uses the graph
Laplacian while Label spreading uses the normalized graph
Laplacian in the design of the transition matrix.

C. Evaluation Metrics and Results

Various metrics can be used in evaluating multi-label clas-
sifier models. In our experiment, we measure the classifiers
using the precision, recall, F1-scores, and subset accuracy.
We show both the micro and macro averaging methods.
The expressions of the performance metrics used in the
experiments are

Precision = TP/(TP + FP),

Micro-Precision =

L∑
i=1

TPi/

L∑
i=1

(TPi + FPi),

Macro-Precision =

L∑
i=1

Precisioni/L,

Recall = TP/(TP + FN),

Micro-Recall =

L∑
i=1

TPi/

L∑
i=1

(TPi + FNi),

Macro-Recall =

L∑
i=1

Recalli/L,

F1-Score = 2× Precision× Recall

Precision + Recall
,

Micro-F1 = 2× Micro-Precision×Micro-Recall

Micro-Precision + Micro-Recall
,

Macro-F1 = 2× Macro-Precision×Macro-Recall

Macro-Precision + Macro-Recall
,

Subset-Acc =
1

N

n=1∑
N

I[yn = tn],

where TP, FP, FN are the true positives, false positives,
and false negatives given a positive and negative class
set respectively. TPi, FPi, FNi are the true positives,
false positives, and false negatives given a positive class i
respectively. Precisioni and Recalli are the precision and
recall score for class i. N is the number of test samples, yn
and tn are the predicted and target labels respectively. I is
an identity function that outputs 1 only when the prediction
matches the true subset exactly, and 0 otherwise.

We report the average F1-score obtained after 5-fold
cross-validation. We compare it against several supervised
methods adopted for multi-label learning; however, we re-
port result from Gaussian Naive-Bayes [11] and LSVM -
the baseline methods which gave the best results for the

multi-label tasks. Table III shows the performance result
obtained from the multi-label evaluation. Figure 2 shows
the classification accuracy of each class independently when
using Naive Bayes, LSVM and the proposed DGM. We also
show the results obtained using the only the graph, text, and
a concatenation of graph and text information as input to
the model in table IV. It can be observed that our proposed
model has the best performance over other baselines.

V. APPLICATION OF EXTRACTING TOP-k POPULAR
DATASETS IN 20 FIELDS

We then apply the proposed model to classify all unla-
beled papers in the real multi-label Delve dataset, and then
we extract and report top-k popular data sources from the
documents in each class. The general algorithm is provided
in Algorithm 1.

Algorithm 1: Full algorithm for top-k extraction
Input: Citation graph, document text embeddings,

and a set of datasets used by each documents
Output: Top-k datasets mentioned in papers in each

class ranked according to number of
citation

1 Initialization;
2 Feed graph and text embeddings to the DGM

architecture;
3 Train DGM using learned hyperparameters from CV;
4 Predict class labels of unlabeled samples;
5 foreach class label c ∈ C do
6 Select papers assigned to class c and extract the

datasets;
7 Rank extracted datasets by citation count;
8 Select top-k dataset
9 end

For this task, we train our DGM models with the full
821, 976 papers (i.e., 4477 labeled and 817, 499 unlabeled
set), using the best configurations gotten from the multi-
labeled document experiment (see section IV-A) for each
class. Then using the trained model, we predict the classes of
the papers. From the output, we extract the URLs mentioned
in the papers assigned to each class. We manually analyze
the obtained URLs; selecting the valid dataset related re-
sources in each class. Due to space constraints, we picked
the classes with F1-Score 0.79 or higher and show the top
ten datasets resources in table V.

Analyzing the results obtained for the Agent class, we
observe that the top results compose of modeling and simu-
lation tools. We attribute this to the fact that the verification
and validation of AI agent systems are more complicated
than the traditional evaluation method of giving a dataset
as input and testing against an expected value [21]. Thus,
we conclude that in this research area, the evaluations are



Table III: Result summary of the multi-label evaluations on the Delve dataset

Methods Recall Precision F1-score Subset accuracy
Macro Micro Macro Micro Macro Micro

GNB 0.61 0.68 0.42 0.44 0.48 0.53 0.26
LSVM 0.43 0.54 0.66 0.73 0.51 0.62 0.44
LProp 0.40 0.50 0.43 0.52 0.41 0.51 0.38

LSpread 0.40 0.50 0.44 0.53 0.41 0.51 0.38
DGM (BR) 0.51 0.6 0.56 0.62 0.52 0.61 0.42

DGM 0.45 0.55 0.62 0.71 0.52 0.62 0.48

Table IV: Result summary showing the performance of different inputs to the DGM Model

Methods Recall Precision F1-score Subset accuracy
Macro Micro Macro Micro Macro Micro

Graph 0.19 0.30 0.52 0.77 0.26 0.43 0.29
Text 0.41 0.50 0.64 0.73 0.49 0.59 0.43

Graph and Text (concat) 0.41 0.51 0.67 0.75 0.49 0.61 0.44
Graph and Text (seperate) 0.45 0.55 0.62 0.71 0.52 0.62 0.48

Figure 2: F1-score obtained for each class using the Naive-Bayes, Linear SVM and DGM methods respectively

scenario based and the use of a specific dataset for evaluation
is not prevalent.

Another interesting observation from our result is the
high presence of biological data in the Neural Networks
and Dimensionality Reduction classes. We attribute this to
the increased demand for more advanced models to handle
the increasing data dimensionality, exploit and extract the
inherent information and structure in the vast volumes of
data which have prevailed in computational biology due
to the burgeoning of modern technologies [17]. This need
to handle larger data brought about the development and
application of several dimensionality reduction techniques
to better handle the data, and the introduction of neural
networks and deep learning to bioinformatics because of
their ability to process and learn from large and complex
data [15], [22].

VI. CONCLUSION AND FUTURE WORKS

We extended and investigated the use of deep generative
models on multi-label graph-based semi-supervised docu-
ment classification such that it can learn from both the text
and graph information. The ability to learn from two inputs
that could be of two different distribution means that it could
be used not just for graph-based classification but also can
be applied to data with additional information. We intro-
duced the Delve citation dataset, a new document labeled
multi-label citation dataset for graph-based document clas-
sification. We benchmark the Delve multi-labeled citation
dataset lon the DGM framework, and we show that the
semi-supervised DGM model can learn better classification
models compared to several supervised learning algorithms.
From the classification result on the Delve-ML, we extract
and report the top ten dataset resources used by studies in



Table V: Top-10 dataset resources used in nine selected computer science fields in the delve database

Natural Language Processing Bioinformatics Recommendation Systems
1 WordNet Data Gene Ontology Consortium Flickr Data
2 Linguistic Data Consortium Gene Expression Omnibus Facebook Data
3 TREC Data UCSC Genome Browser Youtube Data
4 Wikipedia Data Ensembl Genome Browser Yahoo data
5 Unified Medical Language System Data European Bioinformatics Institute (EMBL-EBI) IMDB Data
6 NIST DUC Data Saccharomyces Genome Database (SGD) Del.icio.us Data
7 Twitter Data Basic Local Alignment Search Tool Data Twitter Data
8 NTLK Data The Arabidopsis Information Resource (TAIR) Netflixprize Data
9 NATCORP (BNC) Data UCL Statistical Parametric Mapping Data Last.fm Data
10 NML Medical Subject Headings UniProt Data Grouplens Data

Neural Networks Security & Privacy Computer Vision
1 UCL Statistical Parametric Mapping Data Network Simulator (ns-2) UCL Statistical Parametric Mapping
2 Gene Expression Omnibus PlanetLab Flickr Data
3 Gene Ontology Consortium University of Oregon Route Views TREC Video Retrieval Evaluation: TRECVID
4 UCSC Genome Browser Gnutella (wego) OpenStreetMap
5 Saccharomyces Genome Database (SGD) Ebay (Auction) Data The MNIST database
6 Ensembl Genome Browser CAIDA Data CMU Graphics Lab Motion Capture Database
7 UCI Machine Learning Repository Common Vulnerabilities and Exposures (CVE) Data Youtube Data
8 European Bioinformatics Institute (EMBL-EBI) Skype Data VICON Data
9 Arabidopsis Information Resource (TAIR) Data National Vulnerability Database BrainWeb: Simulated Brain Database
10 The DIP Database UCI Learning Repository CAVIAR project Data

Agent Systems Information Retrieval Dimensionality Reduction
1 UCL Statistical Parametric Mapping TREC Data UCSC Genome Browser
2 JAVA Agent DEvelopment Framework WordNet Data Gene Ontology Consortium
3 Open Dynamics Engine (ODE) Gene Ontology Consortium Ensembl Genome Browser
4 NetLogo GeoNames Data UCI Machine Learning Repository
5 Jess Rule Engine LinkedData Data The Arabidopsis Information Resource (TAIR)
6 The Player Project Network Simulator (ns-2) Saccharomyces Genome Database (SGD)
7 Protégé DBLP Data Kyoto Encyclopedia of Genes and Genomes (KEGG)
8 Webots Robot Simulator TREC Video Retrieval Evaluation: TRECVID David Bioinformatics Resource
9 SWARM Agent-based Modeling Simulation Package, Snowball Stemmers ArrayExpress Data
10 Robot Operating System (ROS) UCI KDD Archive European Bioinformatics Institute (EMBL-EBI)

some selected subfields.
In future works, we plan to enlarge the labeled dataset

and publish the full links of the top-k datasets from other
fields. We also aim to improve the data quality further and
provide it in a publicly usable format.
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APPENDIX

A. Derivations of DGM
By assumption, the generative model is given by

p(z) = N (z | 0, I),

p(y) =

{
Ber (y | γt, γx) if y is multi-label
Cat (y |πt, πx) if y is multi-class ,

p(x | y, z) =


Ber (x | fθ1(y, z))

if x is binary
N
(
x |µθ1(y, z), diag(σ2

θ1
(y, z))

)
if x is continuous

,

p(t | y, z) =


Ber (t | fθ2(y, z))

if t is binary
N
(
t |µθ2(y, z), diag(σ2

θ2
(y, z))

)
if t is continuous

,

where y is either a one-hot vector (multi-class) or a binary
vector (multi-label) of length Dy , z is a continuous latent



vector in <Dz , x, t are continuous latent vectors in <Dx ,
and <Dt respectively, Cat(· |πt, πx) denotes a category
distribution wrt the probability vector πt and πx denotes
probability distributions vectors given t and x respectively;
with πt, πx = 1

Dy
ε, N (· |µ,Σ) denotes a multivariate

Gaussian distribution with mean µ and covariance matrix Σ,
Ber(· | γt, γx) denotes a multivariate Bernoulli distribution
with independent random bits wrt the activation vectors
γt, γx respectively. A corresponding inference model is
assumed to be

q(y | t, x) =

{
Cat (y |πϕ1(x), πϕ1(t)) , if y is multi-class
Ber (y | γϕ1(x), γϕ1(t)) , if y is multi-label ,

q(z | t, x, y) = N
(
z |µϕ2(t, x, y), diag(σ2

ϕ2
(t, x, y))

)
.

B. The Variational Bound

Given a set of labeled pairs {(tl, xl, yl)} and a set
of unlabeled {tu, xu}, the task is to learn all the model
parameters {θ1, θ2, ϕ1, ϕ2} and to make prediction t, x→ y
based on the inference machine and q(y | t, x). For a labeled
pair (t, x, y), we have its negative log likelihood

− log p(t, x, y)

=− log

∫
z

p(y)p(z)p(x | y, z)p(t | y, z)dz

=− log

∫
z

q(z | t, x, y)

× p(y)p(z)p(x | y, z)p(t | y, z)
q(z | t, x, y)

dz

≤
∫
z

q(z | t, x, y)

× log
q(z | t, x, y)

p(y)p(z)p(x | y, z)p(t | y, z)dz

=KL(q(z | t, x, y) : p(z))

− log p(y)

−
∫
z

q(z | t, x, y) log p(x | y, z)dz

−
∫
z

q(z | t, x, y) log p(t | y, z)dz. (6)

The KL divergence between two Gaussian distribution has
a closed form

KL(N (x |µ1,Σ1) : N (x |µ2,Σ2))

=− 1

2
log |Σ1| −

Dx
2

+
1

2
log |Σ2|

+
1

2
(µ1 − µ2)ᵀΣ−1

2 (µ1 − µ2) +
1

2
tr(Σ1Σ−1

2 ). (7)

In the special case that Σ1 = diag(σ2
1), Σ2 = diag(σ2

2), we have

KL(N (x |µ1,Σ1) : N (x |µ2,Σ2))

=
1

2

Dx∑
i=1

[
− log σ2

1i − 1 + log σ2
2i +

(µ1i − µ2i)
2

σ2
2i

+
σ2
1i

σ2
2i

]
.

Therefore the first term on the RHS of Eq. (6) becomes

KL(q(z | t, x, y) : p(z))

≈
Dz∑
i=1

[
− log σ(i)

ϕ3
(t, x, y)− 1

2

+
µ
(i)
ϕ3(t, x, y)2 + σ

(i)
ϕ3(t, x, y)2

2

]
. (8)

If x is binary, the third term on the RHS of eq. (6) is

−
∫
z

q(z | t, x, y) log p(x | y, z)dz

≈ −
Dx∑
i=1

log p(xi | f iθ1(y, ẑ, )). (9)

If t is binary, the last term on the RHS of eq. (6) is

−
∫
z

q(z | t, x, y) log p(x | y, z)dz

≈ −
De∑
i=1

log p(ti | f iθ2(y, ẑ, )). (10)

For continuous x, the third term is

−
∫
z

q(z | t, x, y) log p(x | y, z)dz

=

Dx∑
i=1

[
1

2
log 2π + log σθ2(y, ẑ) +

(x− µθ2(y, ẑ))2

2σ2
θ2

(y, ẑ)

]
(11)

For continuous t, the last term is

−
∫
z

q(z | t, x, y) log p(t | y, z)dz

=

De∑
i=1

[
1

2
log 2π + log σθ2(y, ẑ) +

(e− µθ2(y, ẑ))2

2σ2
θ2

(y, ẑ)

]
. (12)

Plugging the above eqs. (8-12) into eq. (6), we get a
variational bound of the model evidence:

− log p(x, y) ≤ L(x, y). (13)

If x and t have the same distribution, (e.g x and t are
binary),

L(t, x, y) =

Dz∑
i=1

[
− log σ(i)

ϕ2
(t, x, y)

+
µ
(i)
ϕ2(t, x, y)2 + σ

(i)
ϕ2(t, x, y)2

2

]
−

Dx∑
i=1

log p(xi | f iθ1(y, ẑ))

−
De∑
i=1

log p(ti | f iθ2(y, ẑ)) + constant, (14)



where ẑ ∼ q(z |x, y). If x and t have the different
distributions, (e.g x is continuous and t is binary),

L(t, x, y) =

Dz∑
i=1

[
− log σ(i)

ϕ2
(x, t, y)

+
µ
(i)
ϕ2(t, x, y)2 + σ

(i)
ϕ2(t, x, y)2

2

]
+

Dx∑
i=1

[
log σθ1(y, ẑ) +

(x− µθ1(y, ẑ))2

2σ2
θ1

(y, ẑ)

]

−
De∑
i=1

log p(ti | f iθ2(y, ẑ)) + constant. (15)

For an unlabeled (t, x), we have

− log p(t, x)

=− log
∑
y

∫
z

p(y)p(z)p(x | y, z)(x | y, z)dz

≤ U(x). (16)

If x and t have the same distribution, (e.g x and t are
binary),

U(t, x) =
∑
y

∫
z

q(y | t, x)q(z | t, x, y)

× log
q(y | t, x)q(z | t, x, y)

p(y)p(z)p(x | y, z)p(t | y, z)dz

≈
∑
y

πyϕ1
(t, x)

{
log πyϕ1

(t, x)

+

Dz∑
i=1

[
− log σ(i)

ϕ3
(t, x, y)

+
µ
(i)
ϕ3(t, x, y)2 + σ

(i)
ϕ3(t, x, y)2

2

]
−

Dx∑
i=1

log p(x(i) | f (i)
θ1

(y, ẑ))

−
De∑
i=1

log p(t(i) | f (i)
θ1

(y, ẑ))

}
+ constant, (17)

where ŷ ∼ q(y | t, x) and ẑ ∼ q(z | t, x, ŷ). As compared to
Eq. (13), the only difference in Eq. (16) is the sum over y. If
x and t have the different distributions, (e.g x is continuous
and t is binary),

U(t, x) ≈
∑
y

πyϕ1
(t, x)

{
log πyϕ2

(t, x)

+

Dz∑
i=1

[
− log σ(i)

ϕ2
(t, x, y)

+
µ
(i)
ϕ2(t, x, y)2 + σ

(i)
ϕ2(t, x, y)2

2

]
+

Dx∑
i=1

[
log σθ1(y, ẑ) +

(x− µθ1(y, ẑ))2

2σ2
θ1

(y, ẑ)

]

−
De∑
i=1

log p(t(i) | f (i)
θ1

(y, ẑ))

}
+ constant. (18)

The summation over y in the unlabeled case increases
exponentially with increasing number of classes in the multi-
label case (i.e summation over all the possible configurations
of the labels). To reduce the complexity, we implement a
negative sampling version. We generate a negative label
sample set C of size s (in our experiments we found
s = 10 to be good enough) for each unlabeled data sample
xiu, t

i
u. Each negative sample ci is a multivariate Bernoulli

distribution with independent random bits wrt the activation
vector 1 − p such that labels with lower probabilities are
selected. A positive sample wrt the activation vector p,
assumed to be the positive label configuration is also added
to the set C. Where p is the learned activation vector during
each epoch.

We then calculate the loss for the unlabeled datasets
U(t, x) using sampled label configuration in the set C. For
instance equation 18 changes to :

U(t, x) ≈
∑
c

πcϕ1
(t, x)

{
log πcϕ2

(t, x)

+

Dz∑
i=1

[
− log σ(i)

ϕ2
(t, x, c)

+
µ
(i)
ϕ2(t, x, c)2 + σ

(i)
ϕ2(t, x, c)2

2

]
+

Dx∑
i=1

[
log σθ1(c, ẑ) +

(x− µθ1(c, ẑ))2

2σ2
θ1

(c, ẑ)

]

−
De∑
i=1

log p(t(i) | f (i)
θ1

(c, ẑ))

}
+ constant. (19)

The learning cost function is

E =
∑

xl,tl,yl

L(xl, tl, yl) +
∑
xu,tu

U(tu, xu)

+β
Nl +Nu
Nl

∑
xl,tl,yl

log q(yl | tlxl), (20)

where β > 0 is a regularization strength parameter.
Nl, Nu are the number of labeled and unlabeled samples
respectively. The first two terms on the RHS of Eq. (20) is
generative loss, the last term is discriminative loss. For the
Multi-label case summing over all the y is expensive. To
reduce the complexity of summing over the y in the multi-
label case, we apply the pseudo labelling technique [16].


