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ABSTRACT
In this paper, we study the graph-based semi-supervised learning
for classifying nodes in attributed networks, where the nodes and
edges possess content information. Recent approaches like graph
convolution networks and attention mechanisms have been pro-
posed to ensemble the first-order neighbors and incorporate the
relevant neighbors. However, it is costly (especially in memory) to
consider all neighbors without a prior differentiation. We propose
to explore the neighborhood in a reinforcement learning setting
and find a walk path well-tuned for classifying the unlabelled target
nodes. We let an agent (of node classification task) walk over the
graph and decide where to direct to maximize classification accu-
racy. We define the graph walk as a partially observable Markov
decision process (POMDP). The proposed method is flexible for
working in both transductive and inductive setting. Extensive ex-
periments on four datasets demonstrate that our proposed method
outperforms several state-of-the-art methods. Several case studies
also illustrate the meaningful movement trajectory made by the
agent.

1 INTRODUCTION
Network data model interactions between entities such as humans
[19], genes [29], and publications [26]. Networks with node or edge
content information are known asAttributed Networks. For example,
in an attributed web network, nodes are attributed with full website
content and edges are attributed with the mention contexts (the
sentence encompassing the website mention). A variety of graph
mining tasks on attributed networks have been exploited as popular
research topics, such as graph embedding [8, 13, 20, 32], community
detection and clustering [7, 21], classification [15, 28, 33], and NLP
[9]. In this paper, we focus on the problem of semi-supervised
node classification on attributed graphs with both nodes and edge
contents.

Definition 1.1. Semi-supervised Node Classification: Given an attributed
graph G = {V , E, Xv , Xe }, where node set V contains a small subset of
labelled nodes Vl = < vi , yi >, 1 ≤ i ≤ |Vl | and the remaining nodes
Vu = V /Vl = < vj >, 1 ≤ j ≤ |Vu | are unlabeled. xv and xe denote the
attributes of nodes and edges in the graph G , respectively. The goal is to infer
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the labels of the unlabeled nodes Vu based on the available but limited node
labels. Learning from the graph content and structure information.

The main solutions to this problem are categorized into two
modes: unsupervised embedding + classifier, and semi-supervised
learning on graph. The approaches in the first branch apply a clas-
sifier on embeddings of graph nodes learned using methods like
Node2Vec [10], DeepWalk [22], or TADW [32]. The algorithms
belonging to the second branch directly learn from the graphs, e.g.,
non-attributed (Label propagation [36] and label spreading [34]),
and attributed graphs embedding (GCN [15], Planetoid [33], DGM
[2], and [27, 28]). The core ideas behind these approaches are to
1) jointly learn from the graph structure and the node attributes
(most of them are not designed to include edge contents); and 2)
aggregate the content of neighboring nodes at different levels of
relevance, from immediate neighbors to neighbors k-hop away.
One limitation of these approaches is the performance downgrade
caused by the noisy information from an exponentially increasing
number of expanded neighborhood members [35], even though
considering high-order structures in graphs might be beneficial
for some graph-based problems [18, 23, 24]. Another issue is the
high computational cost, especially in memory cost, caused by the
exponentially increasing number of expanded neighbors.

Furthermore, most of the previously proposed semi-supervised
methods are transductive, and thus cannot fit to the situations
where new nodes are observed and inserted to the graph. However,
deriving embeddings and conducting classification in an induc-
tive way for new unseen nodes is highly demanding in real-world
settings, e.g., classifying a new published paper/website. Induc-
tive approaches also facilitate the generalization across attributed
graphs with similar feature spaces [11, 33]. It is thus desirable to
design approaches that are flexible for both transductive and
inductive setting.

To reduce the scope of neighbors to be evaluated in the semi-
supervised node classification problem and maintain an induc-
tive property, we propose a recurrent attention framework to
learn to explore neighborhoods. In this way we guide neighbor-
hood exploration to better serve the goal of node classification,
compared to purely random walk. We pose the learn-to-walk task
as a partially observable markov decision process (POMDP) prob-
lem and attack it with reinforcement learning.

To summarize, we address the node classification problem by
letting an agent make recurrent decisions on next nodes to visit in



its walk on the graph. This process can be considered as a recur-
rent attention-based walk. Therefore, we call our proposed model,
Recurrent AttentionWalk (RAW). Comparing to other popular
semi-supervised graph-based node classification approaches, RAW
has the following advantages:
• RAW uses a recurrent-attention strategy, while attention-
based node classification approaches like GAT [28] andAGNN
[27] are based on a self-attention strategy, which access-
ing high-order neighbors by iteratively aggregating one-hop
neighbors. By contrast, our recurrent-attention strategy
learns how to walk and thus can find the walk path well
tuned for classifying the target nodes, and thereby minimiz-
ing the noisy information obtained.
• RAW thus is more efficient than GCN [15] and GAT like ap-
proaches on memory cost, because RAW reduces the number
of nodes to aggregate per hop.
• RAW is usable in both transductive and inductive settings.
We perform extensive experiments on real-world large datasets.
The result shows that RAW has superior performance, sig-
nificantly on inductive setting.
• The walking path generated by RAW can be used to interpret
the decisionmaking process and infer class label dependency,
as shown in our case studies.

2 PREVIOUS WORK
In general, solutions for the studied problem (as defined in the
previous section) target on minimizing the loss

E = El (f (x),y) + Er (f (x))

where El (f (x),y) is the supervised loss function and Er (f (x)) is
the regularizer. The regularizer Er (f (x)) penalizes a model for
assigning different labels f (xi ) , f (x j ) to similar nodes xi and x j ,
which are close on the graph and have similar content.

Zhu and Ghahramani [36] proposed a transductive label prop-
agation model following the theoretical framework of Gaussian
Random Fields to classify nodes in a nearest neighbor graph of a
semi-supervised data set. Some other works follow a two-step solu-
tion by first learning node embeddings with unsupervised methods
[10, 22, 25], and then building classifiers on the learned node embed-
ding to infer the unknown labels. Since the embedding is learned
in a unsupervised way, it is general enough to be deployed across
different tasks (e.g., clustering and link prediction). However, it is
not tailored to fit the use in node classification1.

Recent decades have witnessed a new trend of research on node
classification, which focuses on conducting semi-supervised learn-
ing on graphs. Yang et al. [33] proposed a node embedding method
to jointly predict the neighborhood context and labels of graph
nodes. Kipf et al. [15] proposed the use of graph convolutional net-
works (GCN) for graph-based semi-supervised learning. Zhuang
and Ma [37] extended the idea of GCN by considering global and
local consistency. Akujuobi et al. [2] studied the use of deep genera-
tive models for graph-based semi-supervised learning. Hamilton et
al. [11] proposed GraphSAGE, an inductive method that computes
1We are aware of a big group of related work to our study in graph embedding.
In this section, we focus on the most relevant ones solving node classification in
semi-supervised learning. Comprehensive discussion of other unsupervised graph
embedding for both plain and attributed graphs can be found at [3].

a node representation by applying an aggregation function over a
fixed sample length of node neighbors.

In general, few of the above-discussed approaches attentively
selects the relevant neighboring nodes. The relevance of all neigh-
boring nodes may be implicitly encoded in the aggregation proce-
dure. However, the action on all neighboring nodes without prior
preference introduces noisy information due to the exponentially
increasing of nodes as the exploration range of the neighborhood
extends. To suppress the potential impact of noisy information dur-
ing aggregating the node neighbors, we propose an attention-based
reinforcement learning method for node classification. Next, we
survey the use of attention mechanisms and use of reinforcement
learning on graph-based problems.

2.1 Attention-based Node Classification
We can consider selecting the relevant neighboring nodes to visit
from the perspective of attention mechanism. Introducing atten-
tion mechanism allows the models to focus on the relevant areas
of graphs for a given learning task, such as node classification
[17]. Abu-El-Haija et al. [1] extends deepwalk by using the atten-
tion to guide random walk. Thekumparampil et al. [27] introduced
attention to the GCN propagation layers to assign more weight
to relevant neighbors of each node. Velicovic et al. [28], extend
the idea of GraphSAGE by introducing the use of attention in the
node neighbor sampling. Note that the attention neighboorhood
per node in the papers, as mentioned above, are the nodes one-hop
away from a given node. Our model removes this restriction and
thus can achieve better graph exploration. Also, most of these pro-
posed methods do not scale well on large graphs with non-sparse
feature vectors as node attributes (i.e., continuous vectors). Further-
more, all these attention models share a self-attention strategy.
Specifically, hidden states of each node are computed by attending
their neighbors. Thus, by stacking more layers (i.e., k-layers), the
nodes aggregate information from neighbors up to k-hop away.
We consider a recurrent-attention strategy, where hidden states
of each node are computed by enforcing attention on a recurrent
walk on the graph. This strategy reduces the number of nodes to
be considered per hop and thereby, minimizing the noisy informa-
tion obtained. Also, it enables us to evaluate which nodes are more
useful based on the information it already gathered from previous
hops, and which areas of the graph to explore.

2.2 Reinforcement on Graph-Structured Data
Several works have studied the application of reinforcement learn-
ing on graph-structured data. Hoshen [12] applied soft attention on
the matrix pair-wise interactions between game agents to select in-
formation from relevant agents. Jiang et al. [14] introduced a graph
convolutional reinforcement learning method to learn multi-agent
cooperation. Xiong et al. [31] proposed a model for finding multi-
hop relation paths in knowledge graphs. None of these models are
designed to select the optimal movement trajectory (path) for node
classification.

The GAM (Graph Attention Model) proposed by Lee et al. [16]
is an RNN model for graph classification (not node classification),
through attention on the graph structural composition. The graph
classification differs from node classification on the prediction goal.
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Thus, the GAM model cannot be applied for node classification as
the embedding learned from the graph classification is based on
recurrent attention on nodes with random starting nodes. It is not
designed to encode a linear combination of the node embeddings.
Secondly, the GAM method evaluate the graph label prediction per
step iteratively, which is not feasible for node classification in large
graphs. GAM also assumes that all the nodes know node types
(labels), which does not hold in the settings of semi-supervised
node classification.

3 METHODOLOGY
3.1 Model Description
Wemodel the sequential decisionmaking of which next node to visit
by Recurrent Neural Networks (RNN) [5] to capture the recurrent
dependency in the walk path on the graph. Sequential decision
making describes a situation where the decision maker takes its
action upon successive observations. The choice of action depends
on the expected benefit that can be potentially gained in the future.
Given this setting, Markov Decision Process (MDP) provides a
coherently appropriate solution to the sequential decision making
problem. Nevertheless, exploration of the walk path in an attributed
graph violates the Markov property: the observations of the agent
at each step should be rich enough to distinguish states of the agent
from one to another. In the walk over the graph, observing only the
attributes and the neighbors of the current node is not enough to
capture all topological information. Therefore, the neighborhood
exploration task reduces to a Partially Observable MDP (POMDP)
problem. To attack this issue, we encode the past histories of walk
paths with RNN to augment state representation of the agent, which
facilitates the process of policy learning.

As illustrated in Figure 1, the proposed RAW is composed of 3
networks: the core network, the score network, and the classifi-
cation network. With a small example of an attributed graph in
Figure 1 (a), the whole process can be explained as follows. At the
current time t , the agent is at node v0 and deciding the next visit at
time t +1, thusvt = v0. In the left of Figure 1 (b), the score network
fs (.;θs ) takes as input the previous history ht−1, the current node
attribute xtv , and the attributes of the current neighborhood obser-
vation of the agent, which includes the attributes of the immediate
node neighbors and edges {xtn ,xte }. The job of the score network
is to generate a score for each node neighbor. The generated score
in range [0, 1] denotes the relevance of a node neighbor to the
given node. After the relevance score is normalized, the next node
vt+1 to visit is sampled from its neighbors in proportion to their
relevance. The core network takes over after relevance score is gen-
erated. By selectively aggregating the embeddings of neighboring
nodes xtn based on the score network, an immediate neighborhood
information ctn is formed (see section 3.1.2 for more details). The
core network fh (.;θh ) takes as input the neighborhood aggregation
ctn , the previous history ht−1, and the current node embedding
xtv , and outputs the current walk history ht . This process leads
the agent to v1 at time t + 1, and it repeats to make a move to
v4 at t + 2, etc. After a fixed number of steps T , the final vector
hT summarizing the information obtained from the graph walk is
passed to the classification network fc (.;θc ) for the label prediction
of the starting node. See algorithm 1 for more details.

RAW is also applicable in inductive setting, where thewalk policy
is learned based on the nodes available in the graph. Given a new
node added to the graph, the agent initiates a walk from the new
unlabelled node guided by the learned policy based on fs (.;θs ) and
fh (.;θh ), and finally uses fc (.;θc ) for classification.

Algorithm 1: Classifying node v1
Input: Graph G , start node v1, history vector h0 (a vector of

zeros), node and edge embeddings xv , xe
Result: label prediction for node v1

1 for t ← 1· · ·T do
2 Obtain the current node embeddings x tv of the current node vt ;

x te for edges connecting to vt ; and x tn for neighboring nodes ;
3 Assign relevance value to each neighbor observation

φ t = fs (ht−1, x tv , x
t
e , x

t
n ; θs );

4 Sample next node vt+1 from a categorical distribution
Cat (. |Pt (φ t )) over the neighbors ;

5 Extract the relevant neighbor information c tn ;
6 update the history vector ht = fh (ht−1, x tv , c tn ; θh ) ;
7 end
8 Obtain the label prediction of the start node yv1 = fc (hT ; θc )

3.1.1 Information Flow. The information flow in RAW has
been described above as a sequential decision process, formulated
as POMDP. At the time t , the agent, which can only observe its
one-hop neighbors at the current node, cannot capture the complete
topological information in the large graph. Formulating as POMDP
allows for a careful treatment to the incomplete observation prob-
lem, which is necessary in our case.

To address the uncertainty of observation, we augment the ob-
servation by integrating the information from the previous walk
path. This information is encoded recurrently by RNN and updated
as the agent traverses.

At each step, the agent takes action based on its observation,
including the previous history ht−1, the current node attribute xtv ,
and attributes of its immediate node and edge neighbors, xtn and
xte respectively, transiting to the next node vt+1. The history ht−1
acts as a summary of the previous observations in the graph walk,
combined with the current observation, the history is updated by
the core network ht = fh (ht−1,x

t
v , c

t
n ;θh ), which has GRU at its

core and is formulated as:

zt = σд(W
z [xtv ++ c

t
n ] +U

zht−1 + b
z ),

rt = σд(W
r [xtv ++ c

t
n ] +U

rht−1 + b
r ),

h′t = σh′(W [x
t
v ++ c

t
n ] + rt ◦Uht−1 + b),

ht = zt ◦ h
′
t + (1 − zt ) ◦ ht−1. (1)

where ◦ and ++ denote element-wise multiplication and vector con-
catenation respectively. The variable zt is the update gate which
determines the amount of past information to overwrite, rt is the
reset gate which decides the amount of past information to compute
a new memory content, h′t is the current memory content, and ht is
the output vector containing information from the current unit and
previous units. The variablesW and U are the weights; xtv is the
node attribute of the current node, ctn is the aggregated attribute of
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Figure 1: The proposed RAWmodel. See section 3.1 for description.

the relevant current node neighbors (see section 3.1.2), and bz ,br ,b
are the bias vectors.

At the end of the walk (t = T ), the core network fh (.;θh ) pro-
duces hT , the embedding of the full trajectory started from the
target node. To classify the target node, hT is given to the classifi-
cation network fc (.;θc ), modeled as a 2-layer neural network, to
predict the class label.

3.1.2 Action. The agent is expected to take actions to choose
the most relevant nodes to visit, and finally collect sufficient in-
formation for classifying the target node. Therefore, we can deter-
mine the next node to select as an action at based on the output
φt = fs (ht−1,xtv ,x

t
e ,x

t
n ;θs ) of the score network. The output φt

is a measure of relevance between node vt and its neighbors, and
thus, is useful for deciding which of the neighboring nodes are
relevant to the current node vt . φt will be used for the next node
selection, and also serve for the history aggregation update.

The score network is modeled using a sigmoid activation func-
tion. Values in φt are thus between 0 and 1 for each neighbor-
ing node. For the sake of better exploration, a stochastic policy π
is adopted to make the choice of the next node vt+1 to visit via
sampling under the categorical distribution P = Cat(.|φt ), after
normalizing φt : P = Cat(.|φt ) = 1∑

vk
φ tvk
× φtvk .

Then the aggregation of relevant neighboring nodes is conducted
as:

ctn =
∑
vk

xk × 1(φ
t
vk − 0.5); vk ∈ Nr (vt ), (2)

where Nr (vt ) is the set of nodes in the one-hope neighborhood of
the current node vt , xk is the node attribute of node vk in the set,

and φtvk is the relevance score of vk . The indicator function 1(.)
outputs 1 when positive and 0 otherwise.

3.1.3 Reward. In our model, the performance of a graph walk
path (trajectory) would be measured at the end, like evaluating
a student passing or failing a course in the final exam after one-
semester recurrent study. Specifically, the agent gets an immediate
reward rt = 1 at the last step T , if the label prediction at the end
(t = T ) is correct and rt = −1 otherwise. The goal of the agent is
to take actions with large reward to go, R =

∑T
t=1 rt . This reward

encourages the agent to explore nodes on the graph that improve
the final predictive performance.

The setting of T is application dependent. A large T allows for
long-run exploration but increases computational cost, while a
small T limits the knowledge to aggregate. We have a sensitivity
analysis about T in the experimental section.

3.2 Training
The final target of our model is to classify an unknown node. Given
a trained model, the agent starts from the unknown node, follows
the policy to traverse the graph and assigns a label to the given
node by the classification network at the end of the graph walk. To
fulfill the goal of the model, it is required to learn a good walk policy
and classification network. And we conduct the training process in
a semi-supervised manner integrating both labeled nodes Vl and
unlabeled ones Vu efficiently.

We augmented the observation to tackle the partial observation
problem. But to indicate the property of POMDP, we adopt o1:t
to represent the partial observations along the path until time t ,
while in our study augmented observation {ht−1,xtv ,xte ,xtn } acts
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as o1:t . We would like to train the policy π (at |o1:t ;θ ) to learn the
mapping from the observation space to the action space. Since
the policy will take its history from previous transitions as one
part of its input, the training of policy will in fact result in an
improved core network to provide better history embedding and
a score network for more accurate score generation. Therefore,
we train the parameters θ = {θs ,θh } together for the policy. The
policy objective is the reward in the future over the expectation
of the graph walk paths following the current policy, which is
J(θ ) = E(π ;θ )

[ ∑T
t=1 rt

]
.

However, computing the objective function is tough in practice.
The expectation over joint probability distribution of walk paths
is hard to measure. Therefore, adopting the trick of log derivative
to change the gradient of the expectation to the expectation of the
gradient, the algorithm REINFORCE for POMDP in [30] could take
gradients of the objective as following:

∇θJ =

T∑
t=1
Ep(o1:T ;θ )[∇θ logπ (at |o1:T ;θ )R]

≈
1
M

M∑
i=1

T−1∑
t=1
∇θ logπ (ait |oi1:t ;θ )γ

T−tRi . (3)

The oi ’s are the roll-out sequences obtained from running the agent
πθ for i = 1, ...,M episodes, and γ ∈ (0, 1] is a discount factor that
gives more preference to actions performed closer to the time the
final prediction is made (i.e., t = T ). Ri is the reward to go of the
episode i . We only adjust the log-probabilities for steps 1· · ·T − 1
since there is no choice of next node to visit at time T .

On breaking down the joint distribution of the trajectory, the
gradient could be estimated by sampling different roll-outs, each
running the agent for T limited time steps, from which obtain-
ing the rewards of observations and actions for the estimate. This
trial-and-error method is conducted under the current policy, thus
providing feedback to the policy and guiding it towards better re-
gions in the parameter space. The information of policy gradients
will be back propagated to update parameters of the policy. The
differentiable score network fs and core network fh , represented
as neural networks, will be updated. This intuition follows: any
gradients of the policy that correspond to high rewards are higher
weighted, making roll-outs with higher rewards more likely.

The expected reward of the roll-out only depends on the classifi-
cation at the end of the walk. Therefore, with the roll-outs starting
at labeled nodes but traversing over unlabelled nodes, the training
is allowed in a semi-supervised manner to use the unlabeled ones as
the transitional nodes. It effectively integrates labeled and unlabeled
nodes to utilize their information to the maximal extent. Besides,
high variance from sampling still exists, though the estimate is an
unbiased one. The reward setting alleviates this problem in sampled
trajectories to some degree by reducing the reward collected at the
intermediate steps of roll-outs.

For the classification fc (.;θc ) network, we define the loss to
include the classification error (cross-entropy) and L2 regularization.
The classification network is trained in supervised way via gradient
descent by itself and provides reward signals to the agent, while
score network is trained using REINFORCE. The whole model is
trained end-to-end.

Table 1: Statistics of datasets used in the evaluations.

# Nodes #Edges #labels # Labeled nodes
CoraL1 31,314 133,491 10 21,112
CoraIDA 31,314 133,491 23 9,743
DBLP 1,037,692 7,371,345 6 238,350
DELVE 1,229,280 4,322,275 7 665,495

4 EXPERIMENTS
In this section, we present and discuss the extensive experiments
and results obtained. We first introduce the four used datasets, the
comparison methods, the implementation details, and parameters
used for all the models. Finally, we report the results obtained and
also present a case study.

4.1 Datasets
The evaluation datasets are citation networks constructed from
Cora, DBLP, and Delve datasets. For each of the resulting paper in
the citation networks, we extract the titles (and abstract when avail-
able). We also extract the citation context (sentences encompassing
the citation) of the references from the papers when available. The
statistics of the datasets are shown in Table 1.

CoraL1: The Cora dataset is extracted from the original Cora
data2. We excluded papers with missing titles and papers with no
citation and references (isolated papers). We use the top level labels
provided in the dataset.

CoraIDA: The CoraIDA dataset is constructed as in the CoraL1.
However, we only train and test on the papers under Artificial
Intelligence, Databases, and Information Retrieval.

DBLP: The DBLP dataset was extracted from the DBLP dump3.
This dump is composed of the full DBLP data at the time of down-
load. We extracted papers published in preselected conferences and
journals with a focus on predefined topics. Thus, if a paper X is
published in one of the database focused conference or journal,
paper X is assigned the label “database”. We constructed a citation
network by selecting the neighbors (1 hop away) of each paper. For
each of the resulting paper, we extract the title (and abstract when
available). This dataset has no edge attribute since the DBLP has
no full-text content information.

Delve: The delve dataset is extracted from the delve website4.
Just as in the DBLP data, we extracted papers published in pre-
selected conferences/journals targeting some predefined topics.
The citation graph and paper labeling were constructed in the same
ways as in DBLP.

4.2 Experimental setup
The experiments were conducted on a Linux system using Python
. Our method is implemented using the Tensorflow library. Each
GPU based experiment was conducted on an Nvidia 1080TI GPU.
When the abstract is available, a paper (node) attribute is given
as a concatenation of both the title and abstract else only the title
is used. Each citation relationship (edge) attribute is given as the
concatenation of all its citation contexts (i.e., sentences where the
reference is mentioned in the citing paper). The paper and citation
2https://people.cs.umass.edu/∼mccallum/data.html
3https://dblp.uni-trier.de/xml/
4http://adatahub.com
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Table 2: Accuracy results on the citation datasets. The percentage values signify the amount of training data used.

CORAL1
10% 20% 30% 40% 50%

Transductive
Random 21.1 21.1 20.6 20.5 20.8
Node2Vec 72.9 75.0 75.6 75.8 75.8
Deepwalk 71.8 74.2 75.2 75.3 75.3
TADW 71.3 73.8 74.7 75.5 75.9
Planetoid-T 48.0 54.3 55.7 63.0 63.4
GCN_MLP 73.2 76.2 77.3 77.7 78.3
GCN 80.3 82.4 83.3 83.8 84.2
GCN_cheb 80.4 81.9 82.9 83.6 84.2
GAT 75.5 75.9 76.6 76.1 76.4
RAW-T 80.1 81.8 82.4 83.7 84.4

Inductive
Feature 70.9 72.5 73.8 74.0 74.8
GraphSAGE-mean 73.4 77.0 77.3 78.7 79.6
GraphSAGE-GCN 73.9 77.3 77.6 78.5 79.2
GraphSAGE-maxpool 71.0 76.1 77.4 78.5 79.7
GraphSAGE-meanpool 71.4 76.3 76.6 78.3 79.5
GraphSAGE-LSTM 71.0 75.7 76.1 77.5 78.9
Planetoid-I 61.9 71.0 71.8 71.5 73.5
FastGCN-importance 76.3 78.5 79.8 80.9 81.6
FastGCN-uniform 75.7 78.1 79.1 80.2 81.3
RAW-I 80.1 81.8 82.4 83.6 84.3

CORAIDA
10% 20% 30% 40% 50%

Transductive
14.8 14.3 15.2 14.8 14.7
67.8 69.6 71.1 71.8 72.7
66.5 69.8 71.0 72.1 72.0
68.4 70.7 71.9 72.8 74.1
43.1 - - - -
69.4 72.4 74.3 74.9 75.1
76.4 78.1 79.6 80.2 80.7
76.1 78.2 79.6 80.0 80.7
68.4 69.3 70.6 70.8 70.6
76.1 78.0 79.7 79.9 80.6

Inductive
66.5 69.5 71.7 71.6 72.1
68.1 71.7 78.0 74.6 74.9
65.1 66.1 66.8 74.3 68.3
73.8 68.9 75.9 79.5 76.7
64.9 70.1 74.7 79.3 80.3
64.9 77.0 78.1 79.1 75.0
57.1 62.9 65.5 67.1 67.8
5.3 74.5 76.8 77.6 78.4
6.1 74.0 76.4 77.4 78.0

76.1 78.0 79.2 79.9 80.4

DBLP
10% 20% 30% 40% 50%

Transductive
Random 20.6 20.6 20.5 20.6 20.6
Node2Vec 78.4 78.6 78.6 78.6 78.6
Deepwalk 78.4 78.4 78.6 78.6 78.5
RAW-T 80.9 81.6 81.7 82.0 82.1

Inductive
Feature 73.6 73.9 74.1 74.1 74.2
GraphSAGE-mean 72.6 73.1 73.6 74.6 74.9
GraphSAGE-GCN 76.7 77.5 77.8 78.3 78.2
GraphSAGE-maxpool 73.8 74.9 75.9 76.6 76.7
GraphSAGE-meanpool 73.2 74.3 74.7 75.5 75.8
GraphSAGE-LSTM 72.2 73.9 74.8 75.6 75.0
Planetoid-I 73.8 74.6 74.5 74.6 74.9
FastGCN-importance 76.4 77.9 78.8 79.2 79.3
FastGCN-uniform 76.4 77.7 78.3 78.3 78.5
RAW-I 80.9 81.5 81.6 81.9 82.1

DELVE
10% 20% 30% 40% 50%

Transductive
24.8 24.8 24.8 24.8 24.7
58.7 58.8 58.8 58.8 58.8
58.6 58.8 58.8 58.8 58.8
81.6 82.9 83.5 83.6 84.2

Inductive
80.8 81.0 81 81.1 81.1
74.4 76.8 78 79.1 79.8
65.1 66.1 66.8 67.7 68.3
74.8 77.8 78.8 79.5 80.4
75.2 77.4 78.4 79.3 80.3
74.5 77.0 78.1 79.1 80.2
78.8 78.7 79.5 79.5 79.6
75.5 75.7 74.9 74.3 73.9
75.1 75.1 74.1 73.1 72.7
81.5 82.8 83.5 83.6 84.0

attributes are then converted to a vector by applying the latent
semantic analysis (LSI) method on the document-term matrix fea-
tures, resulting in 300-dimension features vectors. We complete
the missing citation attributes with zero vectors and assume no
missing paper attribute. In all the experiments, the attribute vector
is normalized to unit norm.

For our proposed model, we performed a grid search over the
length of walkT = {5, 10, 20, 40} and the number of walks per node
M = {1, 5, 10, 20}. For each neural network based model, we per-
formed a grid search over the learning rate lr = {1e−2, 5e−2, 1e−3,
5e−4, 1e−4} and hidden layer dimension d = {32, 64, 128}. We per-
formed the parameter grid search by training on the CoraL1 dataset
with 10% labeled samples. The best parameters per model from
the grid search are then used in all experiments. The RAW models
are trained for 30 epochs with a parameter set (d = 128,T = 10,
lr = 1e−4, M = 5 for training and M = 10 for testing). The GCN
and FastGCN models are trained for 200 epochs with lr = 1e−2
and d = 64 and 128 respectively. The GraphSAGE and GAT models
are trained for 20 and 100 epochs respectively with a parameter
set of (d = 128, lr = 1e−2). The Planetoid models are trained for
5000 epochs with a parameter set of (d = 64, lr = 0.1). We used the

Scikit-Learn implementation of Linear SVM with default settings
for embedding based evaluations. All experiment results reported
in this paper are averaged from running on each dataset five times
on random samples. For each experiment, we separate 30% of the la-
beled data for testing. We then vary the number of labeled training
data, with the remaining labeled samples assumed to be unlabeled
(included in the set of unlabeled samples). In all our experiments,
we assume the graph to be undirected.

4.3 Comparison Methods
To evaluate the performance of our model, we compare RAW with
several state-of-the-art semi-supervised graph-basedmethods using
classification accuracy as the performance metric. We selected the
most competitive baselines that are also publicly available online to
avoid unfair evaluations due to faulty implementation. The baseline
methods are from different groups:

Unsupervised embedding + classifier: we generate embed-
dings using several unsupervised embedding methods, which we
then give as input to the Linear SVMmodel for training and classifi-
cation. The embedding methods include: Node2Vec [10], DeepWalk
[22], Latent Semantic Analysis [6], and TADW [32].
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Semi-supervised learning on graph: we selected the most
popular models including Planetoid [33], and GCN [15].

Supervised learning on graph: in the inductive setting, we
evaluate against several variants of FastGCN [4] and GraphSAGE
[11] which are supervised learning models for inductive node clas-
sification. Note, however, that our proposed method works in a
semi-supervised manner in both the inductive and transductive
settings.

Semi-supervised learning on graphwith attention: like our
RAW, GAT [28] and AGNN [27] employed attention mechanism
when aggregating the neighbors. Note that we only show the results
of GAT due to the poor performance of AGNN on our datasets.

4.4 Results
4.4.1 Transductive. Table 3 shows the classification perfor-

mance of our proposed model and other state-of-the-art models.
Our proposed model exhibited similar performance compared with
GCN in the transductive settings, but it outperforms all other base-
line methods in all settings. For the GAT models, we use the sparse
version (SpGAT) as the original implementation gave an out of
memory error (OOM) on even the CoraL1 with 10% labeled samples.
We could only evaluate the GCN and GAT on the Cora datasets
as we got out of memory error when applying them to the other
large datasets due to the dense LSI vectors. We will evaluate the
scalability of these methods and show the memory usage analysis
in section 4.4.4. In summary, RAW is usable on large-scale graphs
and produce the best node classification results, with no significant
difference to GCN, but more efficient than GCN.

4.4.2 Inductive. Table 3 also shows the comparison of RAW
and other inductive models. RAW outperforms all the baseline
methods in all settings. In the inductive setting, the testing nodes
are removed from the training graph and thus are not seen during
training. The agent learns the optimal policy for the graph walk
during training that will be generalized to unseen nodes. The test
nodes are only added to the graph during testing. The agent (guided
by the policy learned after training), starts a walk from the added
nodes to learn the embedding for the new nodes. We compare
RAW against GraphSAGE, FastGCN and Planetoid inductive model.
GraphSAGE and FastGCN are supervised learning algorithms and
thus do not use the unlabeled and test nodes during training. The
superior performance of RAW shows that walks starting from the
new nodes guided by the learned policy aggregated the most useful
information for classifying the starting node (the target to classify).

4.4.3 Trajectory Analysis. Furthermore, we analyze the re-
turned walk trajectory from RAW. This study is performed on the
CoraIDA dataset with T = 30. We extract the trajectories learned
for nodes in each class, and then get the distribution of labels for
all nodes visited on these trajectories. The 23 columns in the whole
heatmap plot correspond to 23 class labels given in Table 3. From
figure 2, we can see that the walk sequences for each class mostly
visit the nodes in the same class as the target class (the light squares
on diagonal). This verifies that RAW agent tends to walk to nodes in
the same class for accomplishing the classification task. It is worth
mentioning that RAW agent has no information about label when

Figure 2: A heatmap whose d-th column demonstrates the
RAW agent starting from nodes with label d moved to nodes
with what label distribution. The visiting frequency rate is
shown in color. Brighter color indicates more visits.

walking, neither the target label (label of the starting node), nor
the label of neighboring nodes.

Table 3: Class label IDs of the CoraIDA dataset

Class ID Class ID
DB/Object Oriented 0 AI/Machine Learning 11
DB/Query Evaluation 1 AI/NLP 12
DB/Relational 2 AI/Data Mining 13
DB/Temporal 3 AI/Speech 14
DB/Concurrency 4 AI/Knowledge Representation 15
DB/Performance 5 AI/Theorem Proving 16
DB/Deductive 6 AI/Games and Search 17
IR/Retrieval 7 AI/Vision and Pattern Recognition 18
IR/Filtering 8 AI/Planning 19
IR/Extraction 9 AI/Agents 20
IR/Digital Library 10 AI/Robotics 21

AI/Expert Systems 22

More importantly, we observe in Figure 2 the relationship be-
tween the classes (note again RAW agent moves without any label
information). For instance, we can observe that papers under some
topics in a research field tend to visit other papers in the same
research field more often. Database papers (with label 0-6) form
a block in the left-bottom corner. The other two blocks, although
not obvious but observable, correspond to information retrial and
artificial intelligence. Figure 2 also highlights the important topics.
We can notice the influence of the Machine Learning class on the
Artificial Intelligence and Information Retrieval community. This
influence is shown by the ratio of times the walk sequence of nodes
in each class under AI visits the machine learning nodes. It is in-
terpretable as an individual usually needs to read some machine
learning papers/books to understand these topics better. We also
notice the versatility of the classes. We see the walk sequence of
the class Theorem Proving mostly visit nodes in its class. This result
shows that the research area is quite narrow while Machine Learn-
ing and Knowledge representation are broader topics and therefore,
more versatile.

To further analyze the performance of RAW, we compare the
path made by RAW and random walk. By settingT = 10, we obtain
a set of trajectories returned by RAW, and another set of trajectories
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of memory error (OOM).

0

5

10

15

20

25

77.5

78

78.5

79

79.5

80

80.5

2 5 10 20 30 40

To
ta

l r
un

 ti
m

e 
(m

in
s)

Ac
cu

ra
cy

walk length (T)

Performance Total  run time

Figure 4: Effect of the walk length on the predictive perfor-
mance and running time.

(a) (b)

Figure 5: The mean and variance of the path label diversity
defined in Eq.(4), measured on ten paths starting from two
randomly sampled paper, (a) in class “Concurrency" and (b)
in class “Vision and pattern recognition"

by random walk starting from the same node. For each trajectory,
we calculate the path label diversity for each walking step t :

δt = 1 −
Σti=01(li = l0)

t
, (4)

where l0 is the label of the starting node, li is the label of the i-th
node on the path, and 1() is the indicator function. The value δt is
low (to 0) when nodes on the path have the same label as the starting
node, indicating that the agent learned to explore neighboring nodes
with the same label as the target label. Note that the agent has no
label knowledge during the walk. Figure 5 shows the mean and
variance of the path label diversity when starting at two different
selected nodes. We can see that RAW agent walks with a much
lower diversity than random walk.

Figure 6: Case study of a sampled walk trajectory, starting
from the node (black node) of a paper entitled “ACritique of
Structure from motion Algorithm” classified as “Vision and
Pattern Recognition” on a subgraph of the CoraIDA graph.

4.4.4 Parameter andMemory Analysis. We study the effect
of the walk length T = {2, 5, 10, 20, 30, 40} on the performance of
the model. We train the model on the CoraL1 dataset with 10%
training samples. In Figure 4, it can be observed that the model
already performs well after ten steps as there is no much improve-
ment with an increase in the number of walks. Meanwhile, more
number of walks causes higher time cost.

Figure 3 shows the GPU memory utilization of our proposed
model and several semi-supervised state-of-the-art transductive
models. We randomly generated Erdős-Rényi graphs in size of 100,
1K, 5K, 10K, 50K, 100K and 500K (the number of nodes), and set
the number of edges in each graph to be ten times the number
of nodes. We randomly generate 300-dimension attributes for the
nodes and edges. We then measure the GPU memory consumption
using the nvidia-smi Linux command on each graph and compare
RAW with GCN, GAT and SpGAT. GCN and GAT do not scale with
the number of nodes and edges (shown with zero bars in Figure 3
after the graph gets larger than 50K).

5 CASE STUDY
In this section, we train the RAW model on the CoraIDA dataset
with a trajectory length of T = 30 and present a case study of a
sampled walk trajectory of a paper. Figure 6 shows the walk se-
quence extracted from a paper entitled “A Critique of Structure from
motion Algorithm” classified as “Vision and Pattern Recognition”
on a subgraph of the CoraIDA graph. The thickness of the edges
signifies the ratio of times the edge was traversed during the walk.
The color of the nodes signifies the class relationship of the node
to the target class. The blue color signifies that a node has the same
label as the target label, the red signifies that a node has a label
different to the target node, and the black color signifies the start
node. Note that the target class is the class of the start node.
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We see from Figure 6 that the agent can selectively make
decisions to visit nodes with the same labels as that of the
start node. The agent also visits unlabeled nodes (white nodes in
the right-bottom corner). We observe that even though the labels
are unknown, the visited unlabeled nodes work on similar topics
as the start paper, e.g., entitled “new statistical models for randoms-
precorrected pet scans”, “fast monotonic algorithms for transmission
tomography”, etc.

6 CONCLUSION
In this paper, we propose to address the semi-supervised node
classification problem in attributed networks by letting an agent
choose the most relevant nodes in a recurrent walk framework.
The decision of where to visit is determined by considering the
previous visiting history, the current node content, node content of
node one-hop neighbors, and the edge content between the current
node and its linked neighbors. The accumulated information from
the nodes in the sequence is finally used for classification. We
show by several experiments and analysis that the proposed model
outperforms several state-of-the-art methods in both transductive
and inductive settings. The analysis of the obtained walk sequences
also confirms that our model selects the most relevant nodes to
visit and thus leads to higher classification accuracy than other
methods.
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